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Vision used to be closer to Al

(¢} See-saw. {f) Witk sexogonal prism.
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Vision used to be closer to Al

- The idea was to start simple and slowly add
complexity

- 1965, H. A. Simon: "machines will be capable, within twenty

of doing any work a man can do."

- 1967, Marvin Minsky: "Within a generation ... the pro
creating 'artificial intelligence' will substantially be so

- 1970, Marvin Minsky: "In from three to eight years w
machine with the general intelligence of an

« [t didn’t work

‘ 3 . Australian Centre for Visual Technologies
‘ ~ Innovation and education in visual information pracessing




Expert predictions of years until Al
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Who was the most famous person to fly
a plane like this?
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Who was the most famous person to fly
a plane like this?

Answer (http://visualqga.csail.mit.edu/):

. yes (score: 12.88 = 3.87 [image] + 9.01 [word])
- no (score: 12.82 = 3.77 [image] + 9.05 [word])
- pilot (score: 8.83 =4.95 [image] + 3.88 [word])

Based on image only: jet, plane, airport, -
Based on word only: no, yes, filte:wp‘\
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yes (score 8 66 = 3 47 [image] + 5.18 [word])
tennis court (score: 8.17 = 6.66 [image] + 1.51 [word])
no (score: 7.62 = 2.74 [image] + 4.88 [word])

Based on image only: tennis court, net, tennis,
= - Based on words only: before, yes, no,
From http://visualga.csail.mit.edu/
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NLP QA tackles harder questions

- Watson won Jeopardy

- Q: William Wilkinson’s “An Account of the
Principalities of Wallachia and Moldovia” inspired thi
author’s most famous novel

- A: Bram Stoker
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Who wrote a book about this guy?
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NLP QA tackles harder questions

- TREC questions:

- What was the monetary value of the Nobel Peace Prize in
19897

- What does the Peugeot company manufacture?

- How much did Mercury spend on advertising ii

- What is the name of the managing dlrector of
Computer?

- Why did David Koresh ask the FBI fo
Average performance is about
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NLP QA is complex
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Attributes for Visual Question Answering

Extract Image
Features

Attributes/Labels/Lo
cations prediction

Q: What kind of glasses are
they drinking out of ? >
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Visual Concept Prediction CNN
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Performance

State-of-art B-1 B-2 B-3 B4 M C P
NeuralTalk [0 0.63 045 032 023 020 0.66 -
Mind’s Eye [6] ] - - 0.19  0.20 - 11.60

NIC [50] _ _ - 0.28 024  0.86 -
LRCN [10] 0.67 049 035 025 . - .
Mao et al.[ 26] 0.67 049 034 024 - - 13.60

Jiaet al.[ 18] 0.67 049 036 026 023 0.81 -
MSR [11] ; § . 0.26  0.24 - 18.10

Xu et al.[57] 0.72 050 036 025 023 - -

Jinetal.[21] 0.70 052 038 028 024  0.84 .

~ Baseline-CNN(I)

VNet+LSTM 0.61 042 028 0.19 0.19 056 | 13.58
VNet-PCA+LSTM  0.62 043 029 0.19 020 060 | 13.02

GNet+L.STM 0.60 040 026 017 019  0.55 | 14.01
VNet+t+LSTM 0.68 050 037 025 022 073 | 13.20
Ours-V, ;4 (1)

Att-SVM+LSTM 0.60 052 038 028 023 0.8 | 12.62
Att-CNN+LSTM 0.74 056 042 031 026 094 | 10.49

Table 1. BLEU-1.2.3.4. METEOR. CIDEr and PP L metrics com-
pared with other state-of-the-art methods and our baseline on MS
COCO dataset. I indicates ground truth attributes labels are used,
which (in -) will not participate in rankings.
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External information?

- Now operating at a higher semantic level

- Use it to add explicit external information

- Explicit storage means less to store implicitly

- It’s not feasible to store all relevant knowledge
implicitly

- And why train a NN to do something i
at
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Use a Knowledge Base

- Scraped or hand crafted
- RDF tuples

- <Obama, President, United States of America>

- But not <everything, gravity, everything>
- Ina DBMS

- Which does inference
- Admits queries in SPARQL (which is ||
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Reasoning in VQA

Input Image

Visual Concepts

-

Object: Person, Giraffe

Attributes: glass, house, room,
standing, walking, wall, zoo

Scenes: museum, indoor
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KB:Cat-
Megafauna
of Africa

same- subject
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____________'I_________

K’

Input Question

What are the common properties between the animal in this
image and the zebra?

B aer

Database Queries

x: ((KB:Giraffe, subject/?broader, ?x) AND
(KB:Zebra, subject/?broader, ?x))

\ A

Answer and Reason

A: Herbivorous animals, Animals, Magafauna of Africa
R: Giraffe Herbivorous animals —> animals

Zebra Magafauna of Africa
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Traversing the Knowledge Base

, "\

Q: List close relatives of the animal.
A: Donkey, horse, mule, asinus, hinny



Q1: Which object in this image is Q4: How many road vehicles
most related to entertainment?  in this image?

Al:TV. A4: Three.
R1: Television = Performing Arts R4: There are two trucks and
- Entertainment. one car.

Q2: Is the image related to sleep? Q5: Tell me the ingredient of |
T i, A2: Yes. the food in the image.
frasitil L bl R2: Attribute-bedroom = sleep;  A5: Meat, bread, vegetable,
Object-bed = sleep. sauce, cheese, spread.
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Q: List common propertles of these two images.

A: Background: snow:

Scene: ski slope, ski resort, mountain snowy

Object concepts: racing, winter sports, outdoor re
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Q: List common properties of these two images.
A: Scene concepts: transport infrastructure;
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