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Figure 2: Our two-stage model for a volleyball match. Given tracklets of K-players, we feed each tracklet in a CNN,
followed by a person LSTM layer to represent each player’s action. We then pool over all people’s spatio-temporal features
in the scene. The output of the pooling layer is feed to the second LSTM network to identify the whole teams activity.

rate of 0.00001 and a momentum of 0.9. For tracking sub-
jects in a scene, we used the tracker by Danelljan et al. [?],
implemented in the Dlib library [?].

4. Exper iments

In this section, we evaluate our model by comparing
our results with several baselines and previously published
works on the Collective Activity Dataset [?] and our new
volleyball dataset. First, we describe our baseline mod-
els. Then, we present our results on the Collective Activity
Dataset followed by experiments on the volleyball dataset.

4.1. Baselines

The following five baselines are considered in all our ex-
periments:

1. Image Classification: This baseline is the basic
AlexNet model fine-tuned for group activity recogni-
tion in a single frame.

2. Per son Classification: In this baseline, the AlexNet
CNN model is deployed on each person, fc7 is pooled
over all people, and is fed to a softmax classifier to
recognize group activities in each single frame.

3. Fine-tuned Per son Classification: This baseline is
similar to the previous baseline with one distinction.
The AlexNet model on each player is fine-tuned to
recognize person-level actions. Then, fc7 is pooled
over all players to recognize group activities in a scene
without any fine-tuning of the AlexNet model. The
rational behind this baseline is to examine a scenario
where person-level action annotations as well as group

activity annotations are used in a deep learning model
that does not model the temporal aspect of group ac-
tivities. This is very similar to our two-stage model
without the temporal modeling.

4. Tempor al Model with Image Featur es: This base-
line which is the temporal extension of the first base-
line, examines the idea of feeding image level features
directly to a LSTM model to recognize group activi-
ties. In this baseline, AlexNet model is deployed on
the whole image, and, fc7 is fed to a LSTM model.
This baseline can be considered as reimplementation
of Donahue et al.’s work [?] for activity recognition.

5. Tempor al Model with Per son Featur es: This base-
line which is the temporal extension of the second
baseline, feeds fc7 pooled over all people to a LSTM
model to recognize group activities.

4.2. Exper iments on the Collective Activity Dataset

The Collective Activity Dataset [?] has been widely used
for evaluating group activity recognition approaches in the
computer vision literature [?, ?, ?]. This dataset consists of
44 videos, eight person-level pose labels (not in use), five
person level action labels, and five group-level activities. A
scene is simply assigned with what the majority of people
are doing. We follow the train/test split provided by [?]. In
this section, we present our results on this dataset.

In Table 1, the classification results of our proposed ar-
chitectures is compared with the baselines. As shown in
the table, our two-stage LSTM model significantly outper-
forms the baseline models. An interesting comparison can
be made between temporal and frame-based counterparts

Outline

• Temporal structured models for 
group activities
• Ibrahim et al. CVPR 2016

• Image annotation with label hierarchies

• Hu et al. CVPR 2016



Example: Rally in a Volleyball Game
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Person Tracks

• Extract trajectories by tracking each person forward/backward in time



Stage 1 : Learning Individual Action Features
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Stage1 : Learning Individual Action Features
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Stage 2: Learning Frame Representations 
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Volleyball Dataset – Frame Labels

Spiking Setting Passing

• 4830 frames annotated from 55 volleyball videos

• 2/3 videos for training, 1/3 testing

• 9 player action labels

• 4 scene labels

Win point

Left/right team variants



Volleyball Dataset – People Labels
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Experimental results on Volleyball Dataset
Method Accuracy

Image Classification 66.7

Person Classification 64.5

Person - Fine tuned 66.8

Temp Model - Person 67.5

Temp Model - Image 63.1

Our Model w/o LSTM1 73.3

Our Model w/o LSTM2 80.9

Our Model 81.6

Dense trajectories: 73.4-78.7

LSTM

LSTM LSTM

LSTM



Visualization of results
Left set Right pass

Left pass

Right Spike

Left spike (Left pass) Right spike (Left spike)



Summary

• A two stage hierarchical model for group activity 
recognition

• LSTMs as a highly effective temporal model and 
temporal feature source

• People-relation modeling with simple pooling



Figure 2: Our two-stage model for a volleyball match. Given tracklets of K-players, we feed each tracklet in a CNN,
followed by a person LSTM layer to represent each player’s action. We then pool over all people’s spatio-temporal features
in the scene. The output of the pooling layer is feed to the second LSTM network to identify the whole teams activity.

rate of 0.00001 and a momentum of 0.9. For tracking sub-
jects in a scene, we used the tracker by Danelljan et al. [?],
implemented in the Dlib library [?].

4. Exper iments

In this section, we evaluate our model by comparing
our results with several baselines and previously published
works on the Collective Activity Dataset [?] and our new
volleyball dataset. First, we describe our baseline mod-
els. Then, we present our results on the Collective Activity
Dataset followed by experiments on the volleyball dataset.

4.1. Baselines

The following five baselines are considered in all our ex-
periments:

1. Image Classification: This baseline is the basic
AlexNet model fine-tuned for group activity recogni-
tion in a single frame.

2. Per son Classification: In this baseline, the AlexNet
CNN model is deployed on each person, fc7 is pooled
over all people, and is fed to a softmax classifier to
recognize group activities in each single frame.

3. Fine-tuned Per son Classification: This baseline is
similar to the previous baseline with one distinction.
The AlexNet model on each player is fine-tuned to
recognize person-level actions. Then, fc7 is pooled
over all players to recognize group activities in a scene
without any fine-tuning of the AlexNet model. The
rational behind this baseline is to examine a scenario
where person-level action annotations as well as group

activity annotations are used in a deep learning model
that does not model the temporal aspect of group ac-
tivities. This is very similar to our two-stage model
without the temporal modeling.

4. Tempor al Model with Image Featur es: This base-
line which is the temporal extension of the first base-
line, examines the idea of feeding image level features
directly to a LSTM model to recognize group activi-
ties. In this baseline, AlexNet model is deployed on
the whole image, and, fc7 is fed to a LSTM model.
This baseline can be considered as reimplementation
of Donahue et al.’s work [?] for activity recognition.

5. Tempor al Model with Per son Featur es: This base-
line which is the temporal extension of the second
baseline, feeds fc7 pooled over all people to a LSTM
model to recognize group activities.

4.2. Exper iments on the Collective Activity Dataset

The Collective Activity Dataset [?] has been widely used
for evaluating group activity recognition approaches in the
computer vision literature [?, ?, ?]. This dataset consists of
44 videos, eight person-level pose labels (not in use), five
person level action labels, and five group-level activities. A
scene is simply assigned with what the majority of people
are doing. We follow the train/test split provided by [?]. In
this section, we present our results on this dataset.

In Table 1, the classification results of our proposed ar-
chitectures is compared with the baselines. As shown in
the table, our two-stage LSTM model significantly outper-
forms the baseline models. An interesting comparison can
be made between temporal and frame-based counterparts
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Label Correlation Helps

Indoor outdoor 
man-
made

outdoor 
natural

leisure man-
made 
elements

cabins 
houses

sports
field

field bat base
ball

grass person building

trench pitcher 
mound

batter’s 
box

play-
ground

barn

Positive correlation

Negative correlation

• Such categorization at different concept layers can be 

modeled with label graphs

• It is natural and straightforward to leverage label 

correlation



Goal: A generic label relation model

• Infer the entire label space from visual input

• Infer missing labels given a few fixed provided labels

Visual 
Architecture

Prior
Activation

Inference
Machine 

on
Knowledge

Graph

Refined 
Probability

Back-propagate Gradient from Loss Function
An End-to-end Trainable 

System

Metadata 
or 

Partial Label



Top-down Inference Neural Network
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Bidirectional Inference Neural Network (BINN)

Bidirectional 
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Visual
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• Bidirectional inference to make information propagate 

across entire label structure

• Inference in each direction independently and blend results



Structured Inference Neural Network (SINN)

Cla s s

Ze bra

Le opa rd

Ca t

Hound

Attribute s

Fa s t

S tripe d

S potte d

Dome s tic

P os itive  Corre la tion

Ne ga tive  Corre la tion

• BINN is hard to train well

• Regularize connections 

with prior knowledge 

about label correlations

• Decompose connections 

into Positive correlation + 

Negative correlation



• Evolve BINN formulation with regularization in connections
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Prediction from Purely Visual Input

• Visual architecture (e.g. Convolutional Neural Networks ) 

produces visual activation

• SINN implements Information propagation bidirectionally

and produces refined output activation 



Prediction with Partially Observed Labels

• Reverse Sigmoid neuron produces activation from Partial 

labels

• SINN adapts both visual activation and activation from 

partial labels to infer the remaining labels



Datasets 
• Evaluate method with two types of experiments on three datasets

Animals with Attributes
[Lampert et al. 2009]

Labels

28 taxonomy 
terms
50 animal classes
85 attributes

• Taxonomy terms are 
constructed from Word Net as 
[Hwang et al. 2012]

• Knowledge graph constructed 
by combining class-attributes 
graph with taxonomy graph

Task:  predict entire label 
set

NUS-WIDE
[Chua et al. 2009]

Labels

698 image 
groups
81 concepts
1000 tags

Task:  predict 81 concepts 
with observing 
tags/image groups

• Knowledge graph produced by 
Word Net using semantic 
similarity

• 698 image groups constructed 
from image meta data

SUN 397
[Xiao et al. 2012]

Labels

3 coarse
16 general
397 fine-
grained

Task 1:  predict entire 
label set
Task 2:  predict fine-
grained scene given 
coarse scene category 

• Knowledge graph provided by 
dataset



Ground Truth: railroad
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Ex2: Inference from partial labels (NUS-WIDE)



Ex2: Inference from partial labels (NUS-WIDE)
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Correct predictions are marked in blue while incorrect are marked in red

• Produce predictions given coarse-level labels (3 coarse categories)

Ex2: Inference with partial labels (SUN397)
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Ex2: Inference with partial labels (SUN397)
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Image Features + SVM [Xiao et al. 2012]

CNN + Logistics

CNN + BINN

CNN + SINN

CNN + Partial Labels + Logistics

CNN + Partial Labels + SINN

• Evaluate on 397 fine-
grained scene categories

• Significantly improved 
performance



Summary

• Inference in structured label space

• Relations within and across levels of a label space

• Model positive and negative correlations between 
labels in end-to-end trainable model



Conclusion

• Methods for handling structures in deep networks
• Spatial structure: learning gating functions to connect people 

for group activity recognition [Deng, Vahdat, Hu, Mori CVPR 2016]

• Temporal structure: hierarchies of long short-term memory 
models for group activities [Ibrahim, Muralidharan, Deng, Vahdat, 
Mori CVPR 2016]

• Label structure: message passing algorithms for multi-level 
image labeling; purely from image data or with partial labels 
[Hu, Zhou, Deng, Liao, Mori CVPR 2016]
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