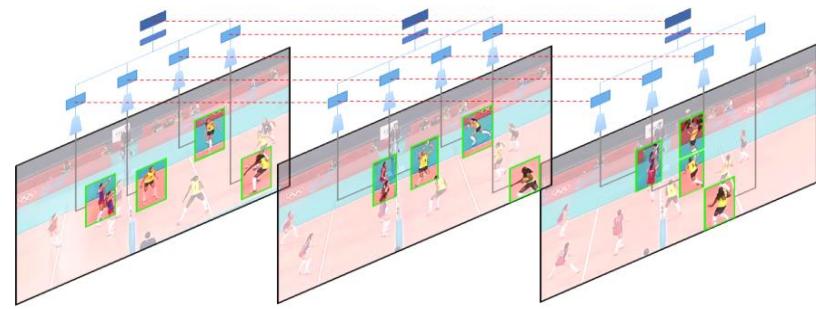
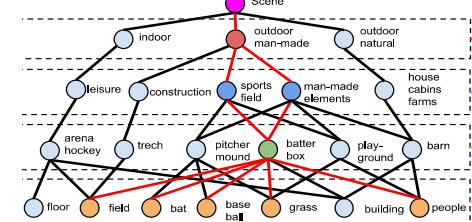


Deep Structured Models for Group Activities and Label Hierarchies

Greg Mori
Simon Fraser University

Outline

- Temporal structured models for group activities
 - Ibrahim et al. CVPR 2016
- Image annotation with label hierarchies
 - Hu et al. CVPR 2016



Example: Rally in a Volleyball Game

► CHN

0

6

USA

0

6

Left Spike

Spiking

Waiting

Waiting

waiting

Moving

Standing

Standing

waiting

Waiting

Waiting

Waiting

世界女排大獎賽 香港站

LIVE

Image
Classifier

Group activity
label

Challenge:

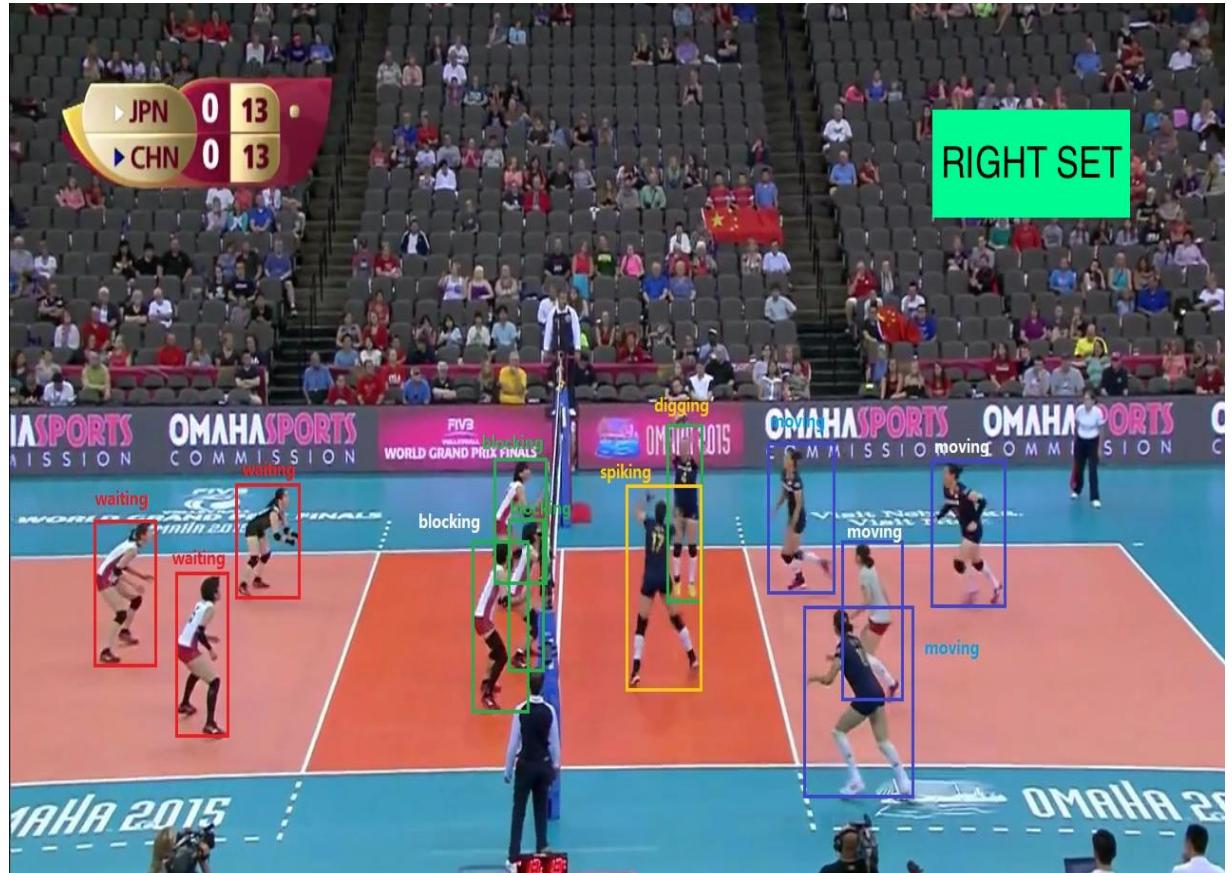
- high level description
- aggregate information over whole scene
- focus on relevant people

Group Activity = Majority's Activity

Group Activity = Key Player's Activity

Group Activity – Right spike

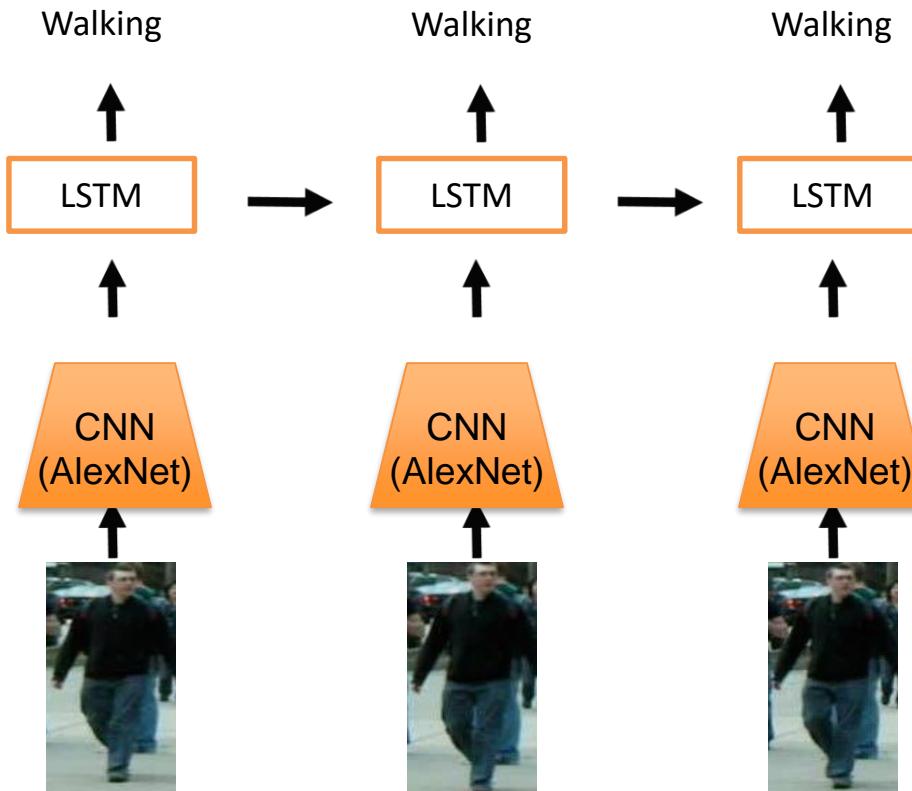
Intuitive fix: use person-centric representation



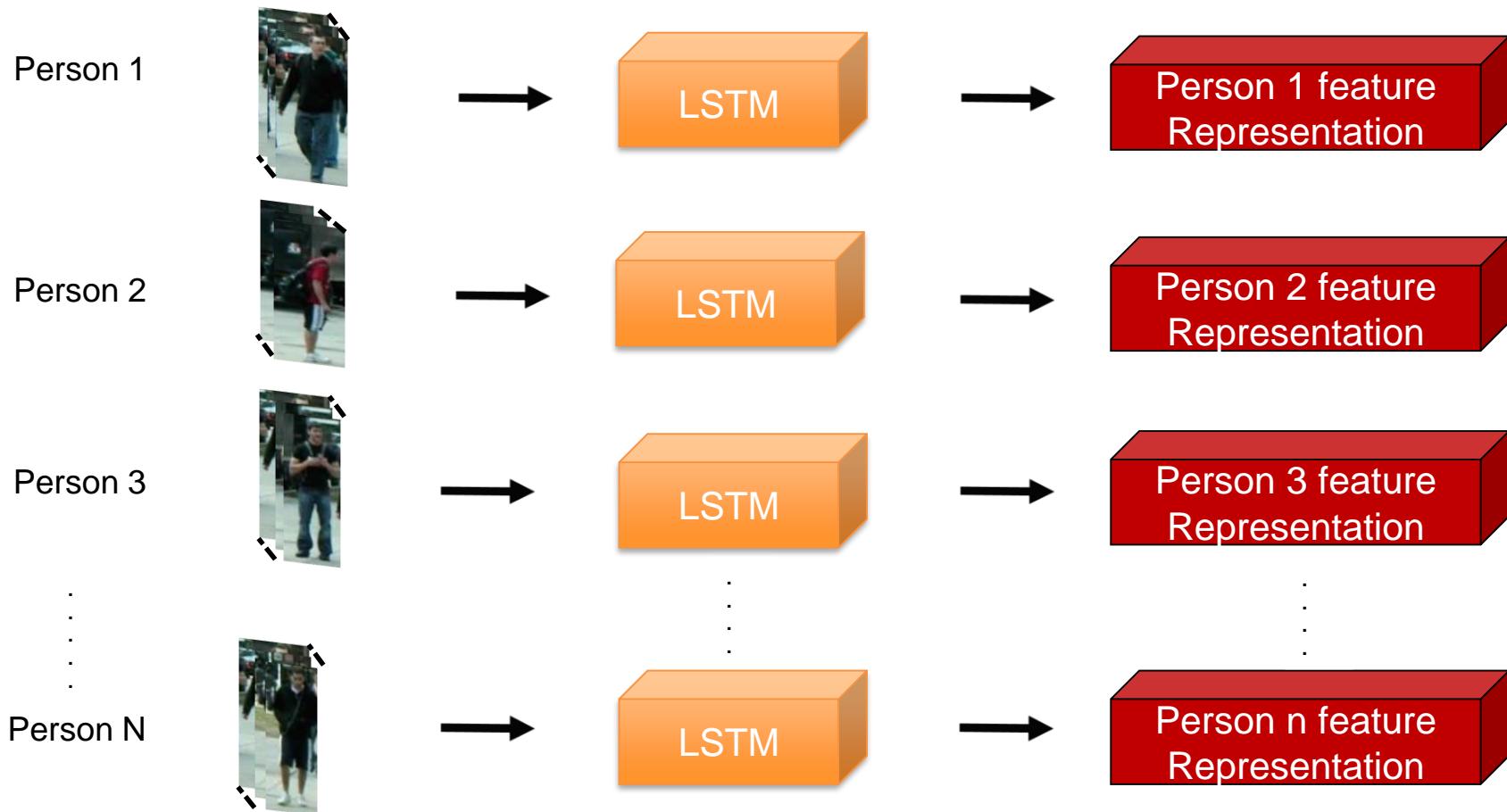
Person Tracks

- Extract trajectories by tracking each person forward/backward in time

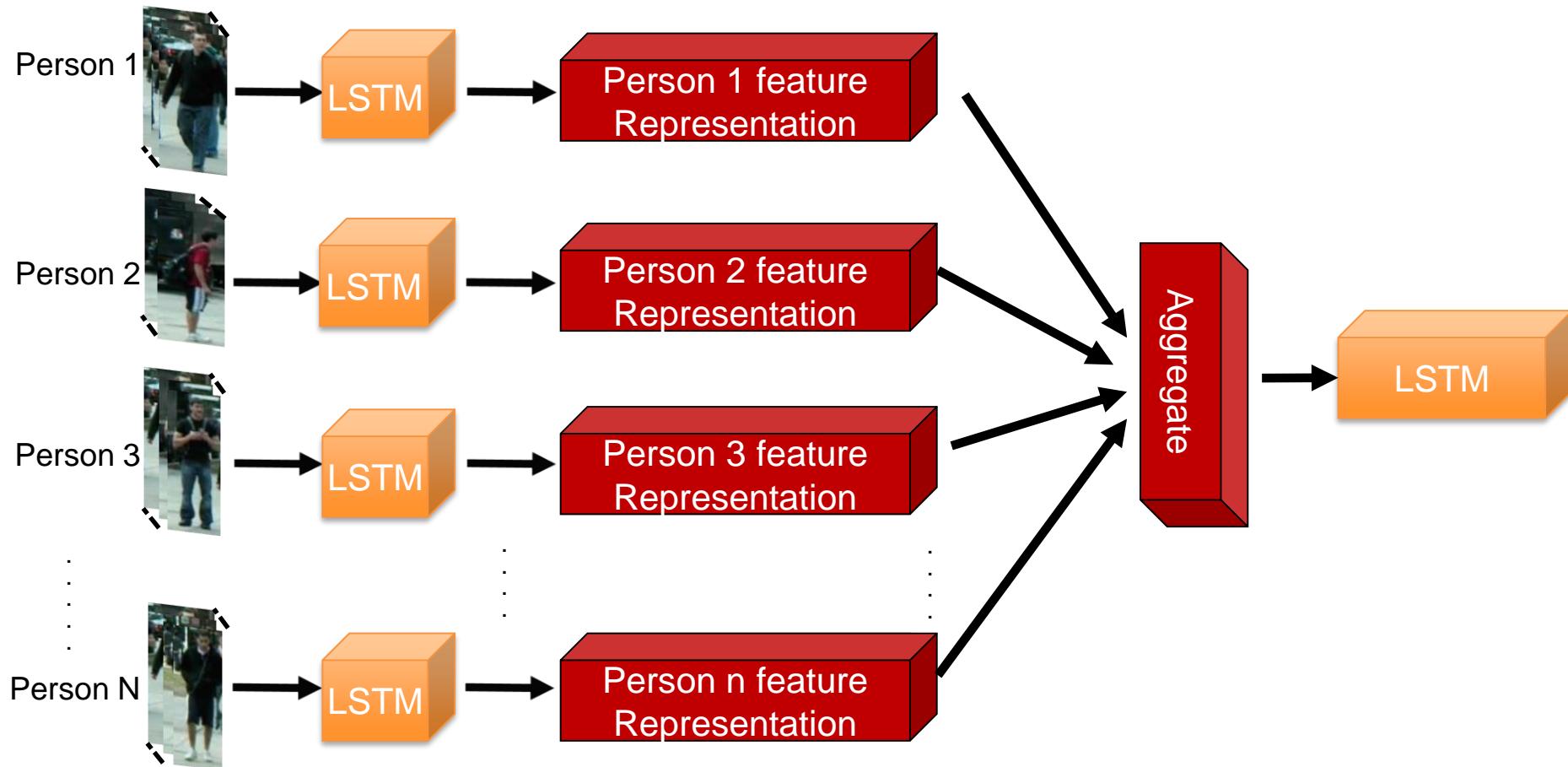
Stage 1 : Learning Individual Action Features



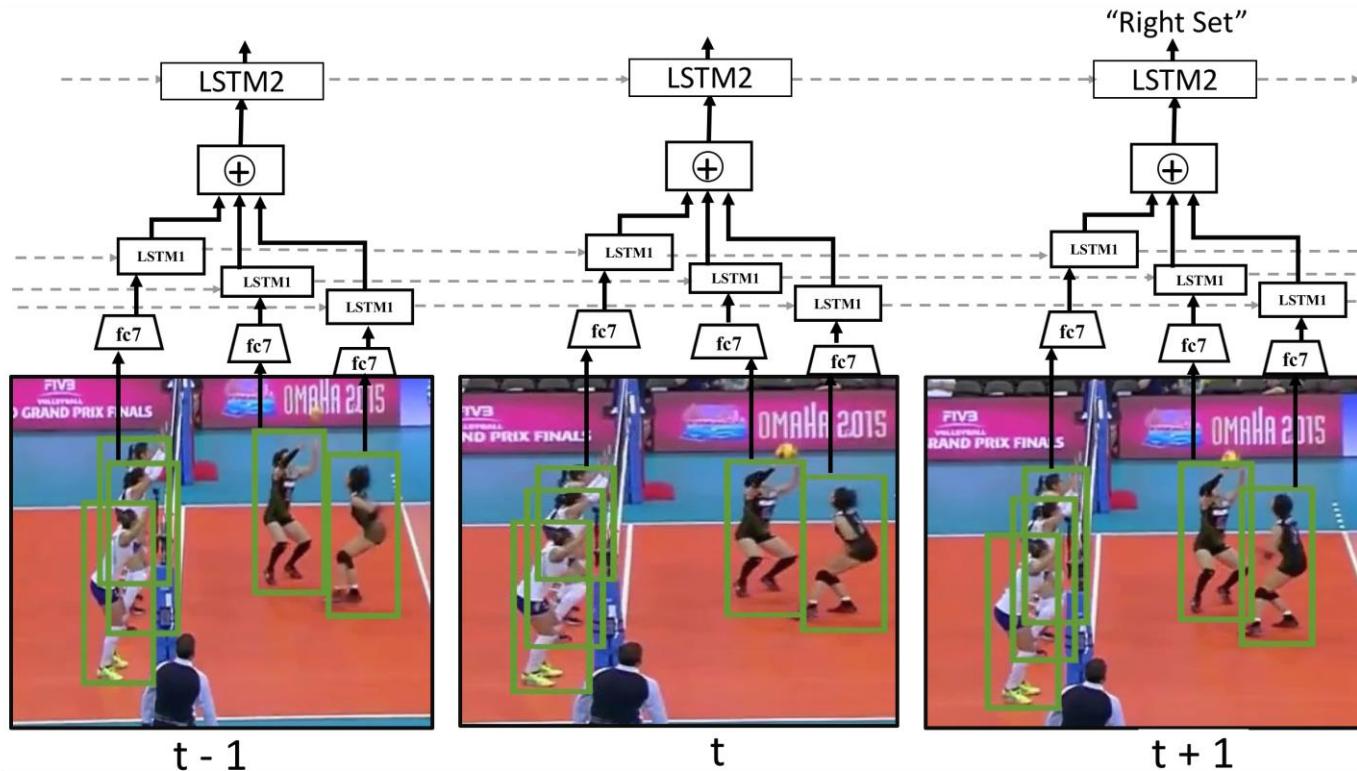
Stage1 : Learning Individual Action Features



Stage 2: Learning Frame Representations



Summary

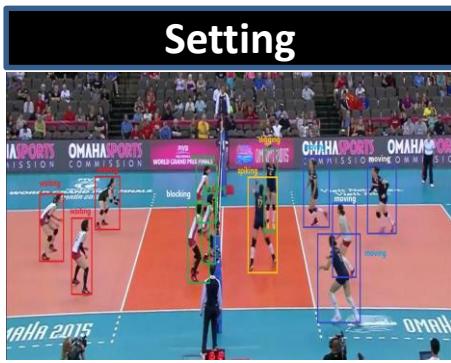


Volleyball Dataset – Frame Labels

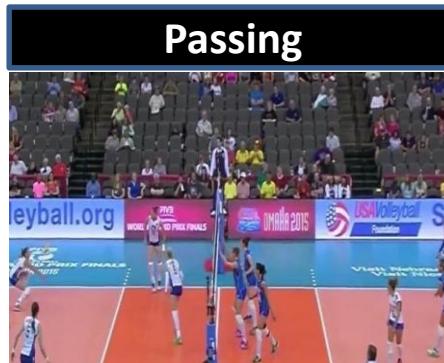
- 4830 frames annotated from 55 volleyball videos
- 2/3 videos for training, 1/3 testing
- 9 player action labels
- 4 scene labels

Spiking

Setting



Passing



Win point

Left/right team variants

Volleyball Dataset – People Labels

Waiting

Digging

Setting

Spiking

Falling

Jumping



Moving

Standing

Blocking

Experimental results on Volleyball Dataset

Method	Accuracy
Image Classification	66.7
Person Classification	64.5
Person - Fine tuned	66.8
Temp Model - Person	67.5
Temp Model - Image	63.1
Our Model w/o LSTM1	73.3
Our Model w/o LSTM2	80.9
Our Model	81.6

	lpass	rpass	lset	rset	lspike	rspike	lwin	rwin
lpass	79.65	3.98	9.73	0.00	3.10	2.65	0.44	0.44
rpass	4.29	80.00	0.00	9.52	2.86	1.90	0.95	0.48
lset	8.33	1.79	85.12	0.60	2.38	1.19	0.60	0.00
rset	5.21	19.27	1.04	68.23	0.00	4.69	1.56	0.00
lspike	3.35	1.12	5.03	0.00	89.94	0.56	0.00	0.00
rspike	2.31	5.20	2.31	4.62	1.16	83.24	1.16	0.00
lwin	2.94	3.92	0.00	0.00	0.00	0.00	88.24	4.90
rwin	1.15	1.15	0.00	0.00	0.00	0.00	12.64	85.06

Dense trajectories: 73.4-78.7

Visualization of results

Left set

Right pass

Right Spike

Left pass

Left spike (Left pass)

Right spike (Left spike)

Summary

- A two stage hierarchical model for group activity recognition
- LSTMs as a highly effective temporal model and temporal feature source
- People-relation modeling with simple pooling

Outline

- Temporal structured models for group activities
 - Ibrahim et al. CVPR 2016
- Image annotation with label hierarchies
 - Hu et al. CVPR 2016

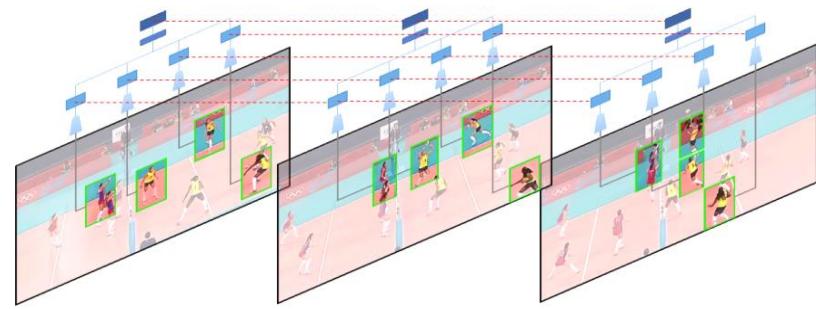
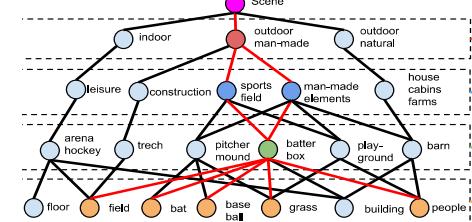
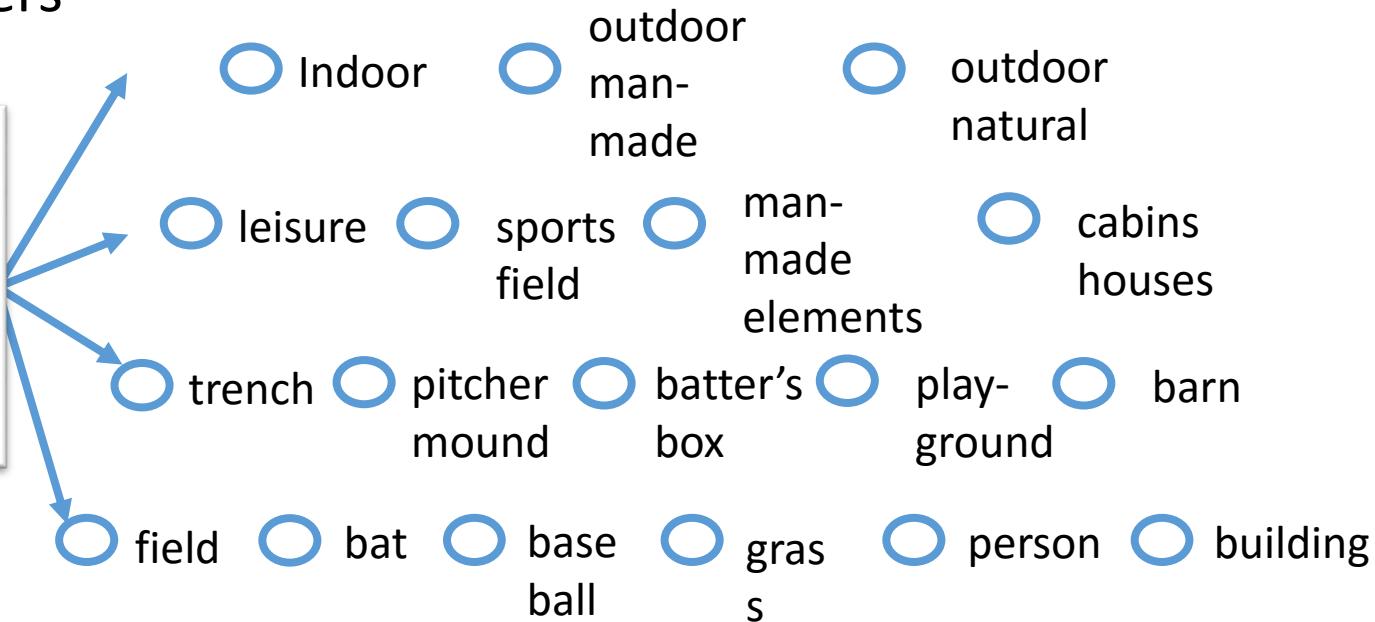


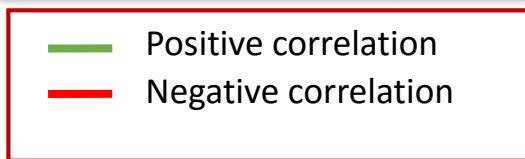
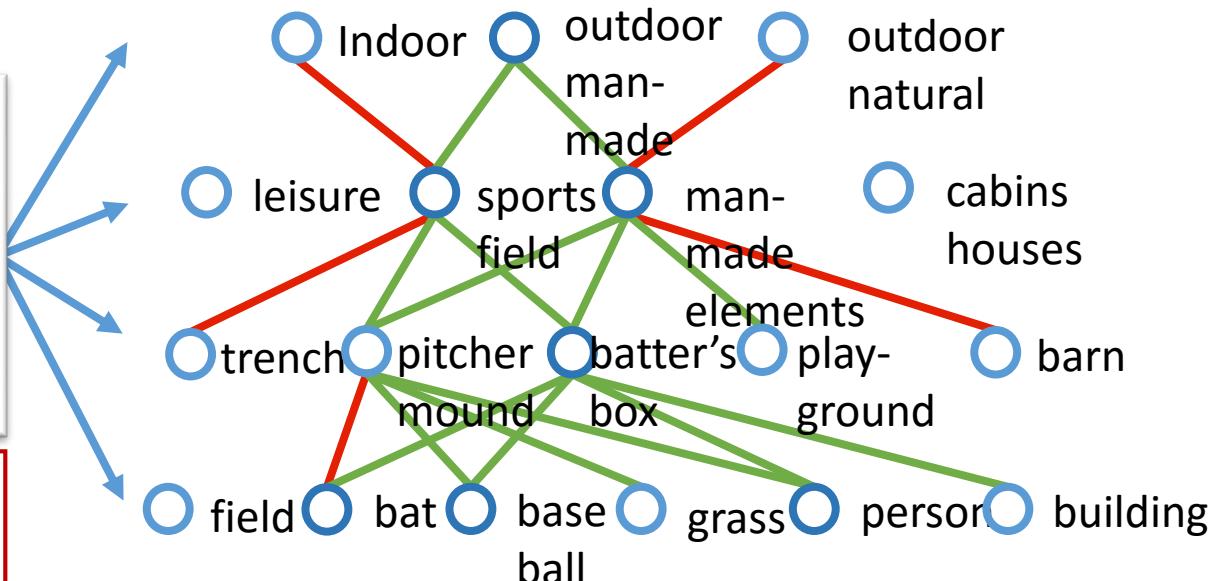
Image Classification

- A natural image can be categorized with labels at different concept layers



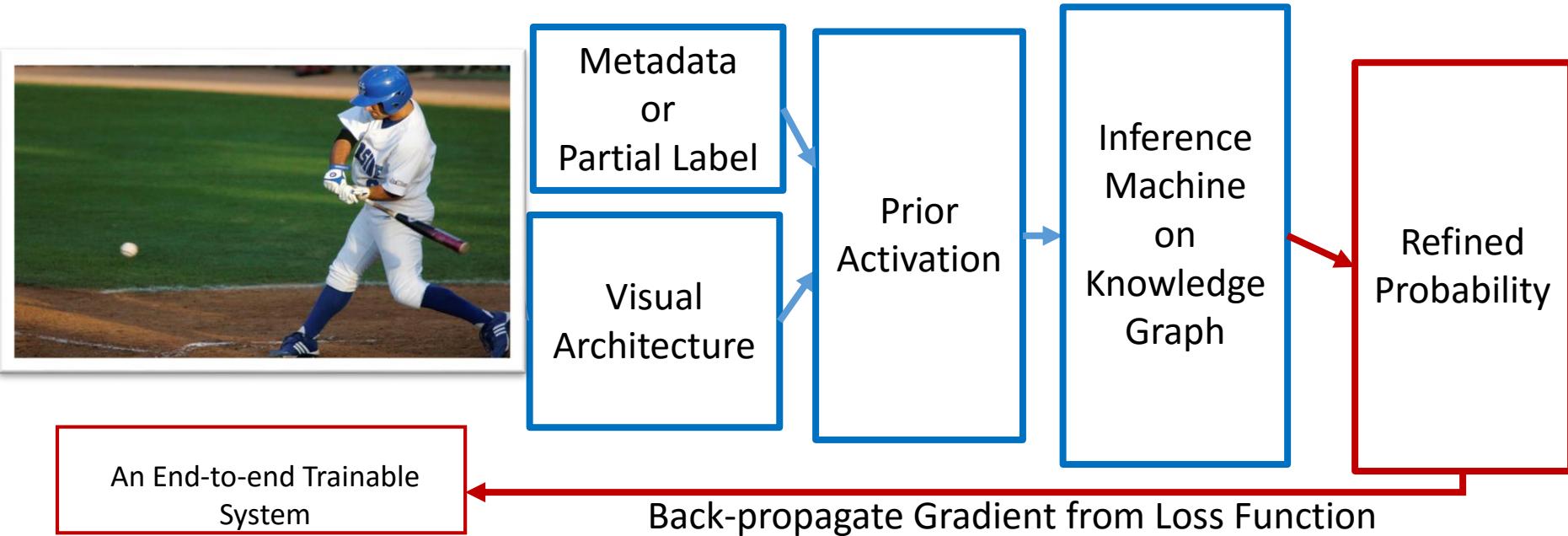
Label Correlation Helps

- Such categorization at different concept layers can be modeled with label graphs
- It is natural and straightforward to leverage label correlation



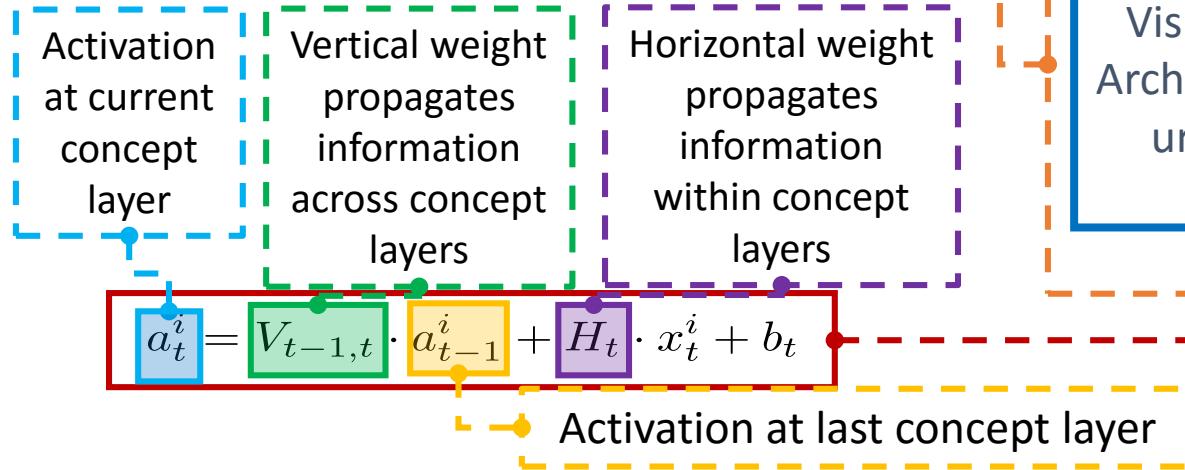
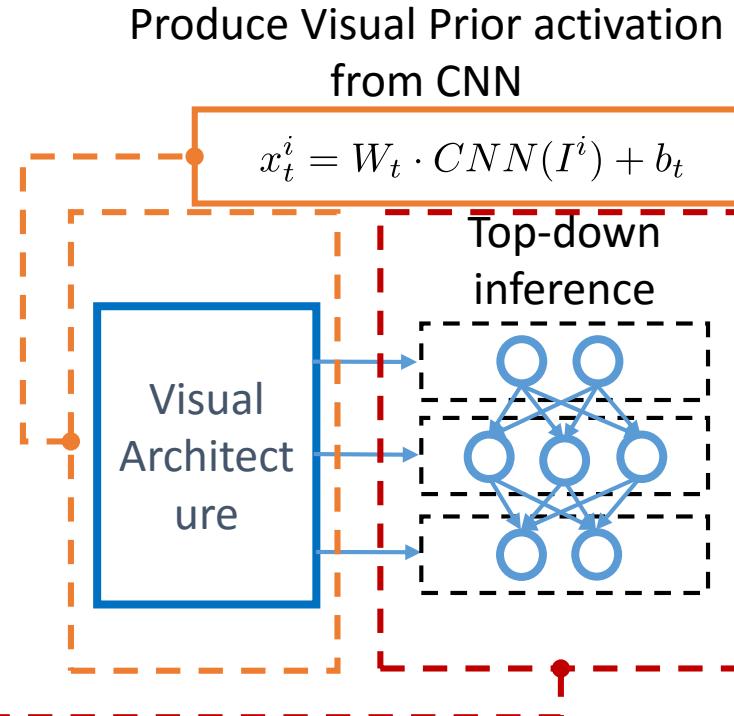
Goal: A generic label relation model

- Infer the entire label space from visual input
- Infer missing labels given a few fixed provided labels



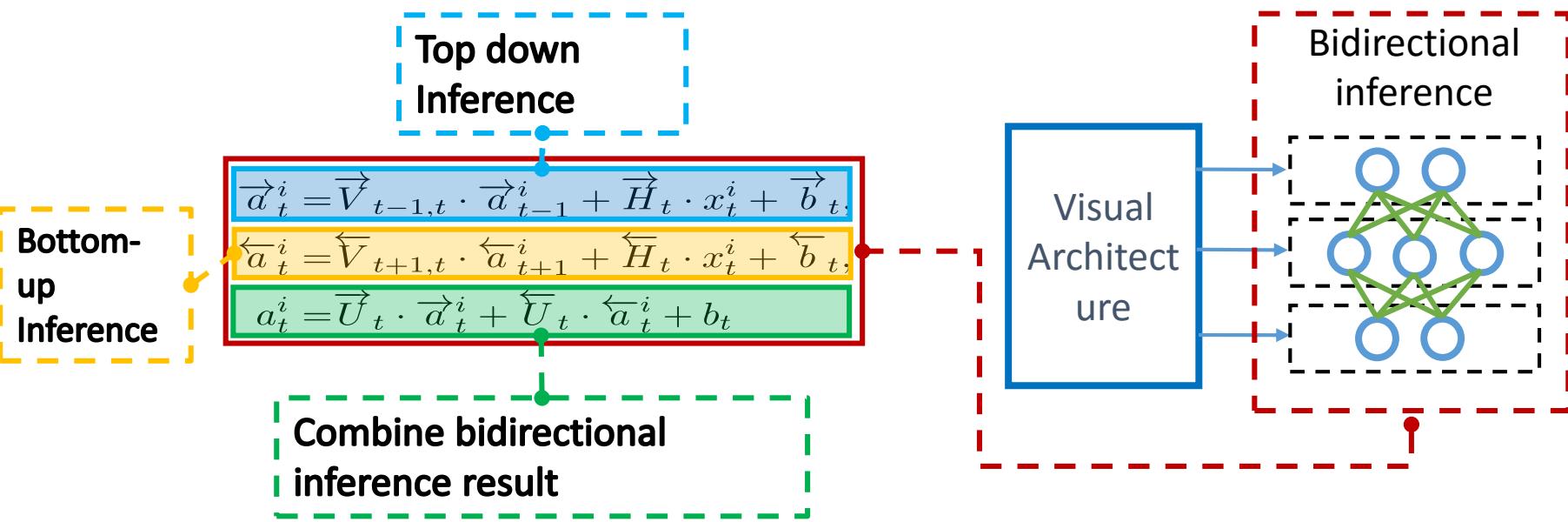
Top-down Inference Neural Network

- Refine activations for each label
- Pass messages top-down and within each layer of label graph



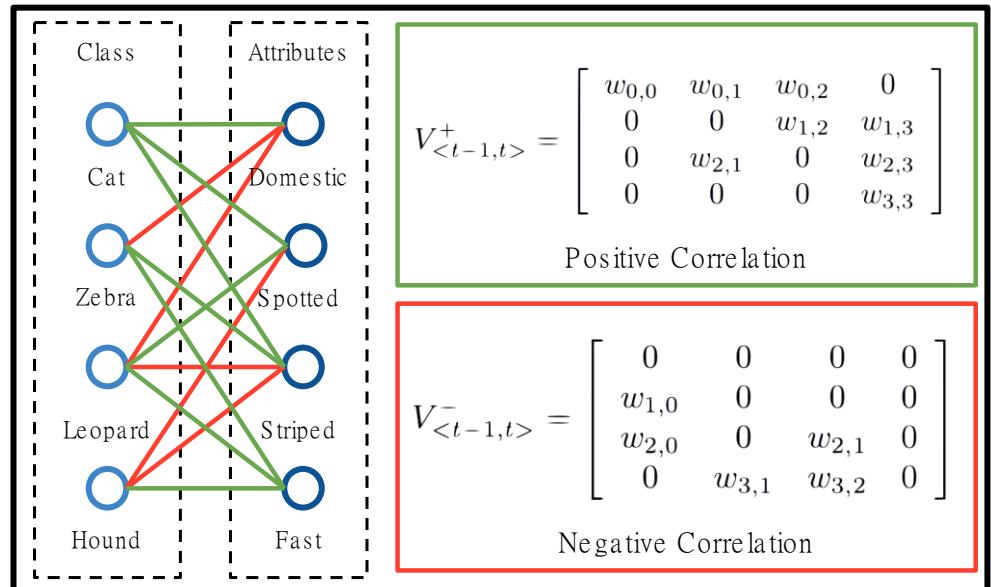
Bidirectional Inference Neural Network (BINN)

- Bidirectional inference to make information propagate across entire label structure
- Inference in each direction independently and blend results



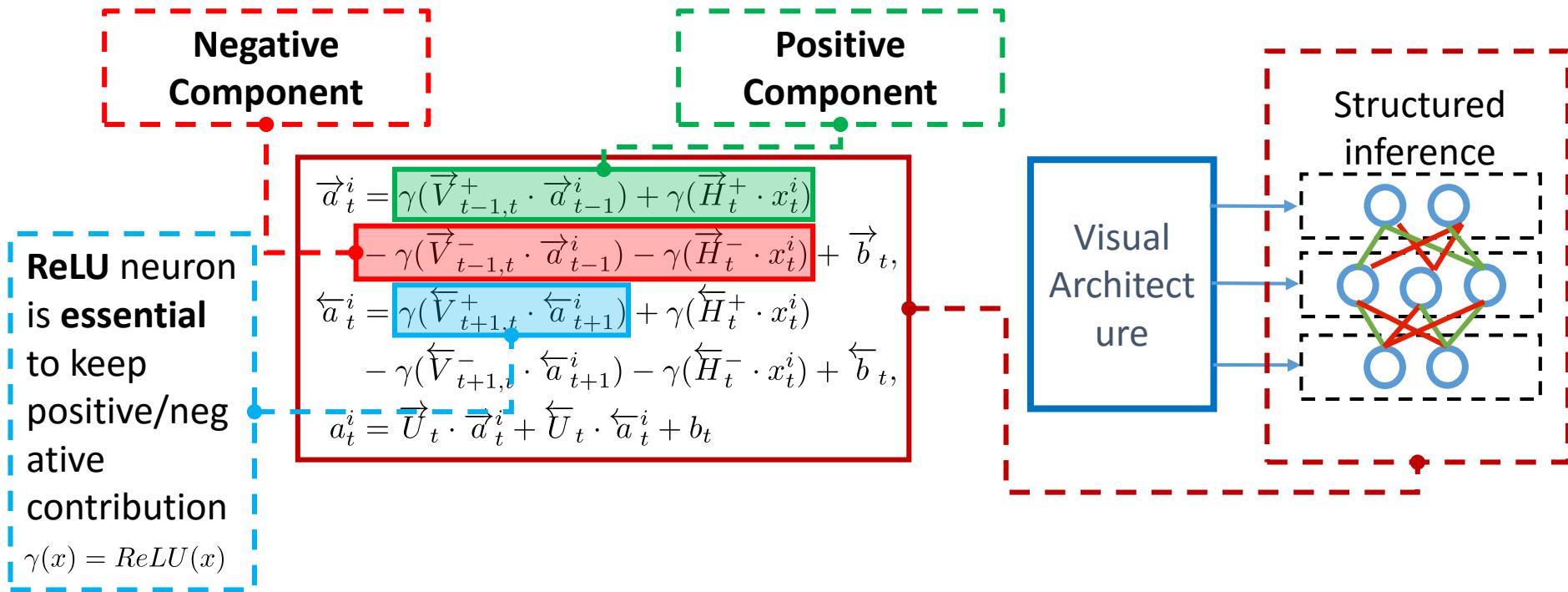
Structured Inference Neural Network (SINN)

- BINN is **hard** to train well
- **Regularize** connections with prior knowledge about label correlations
- Decompose connections into **Positive correlation** + **Negative correlation**



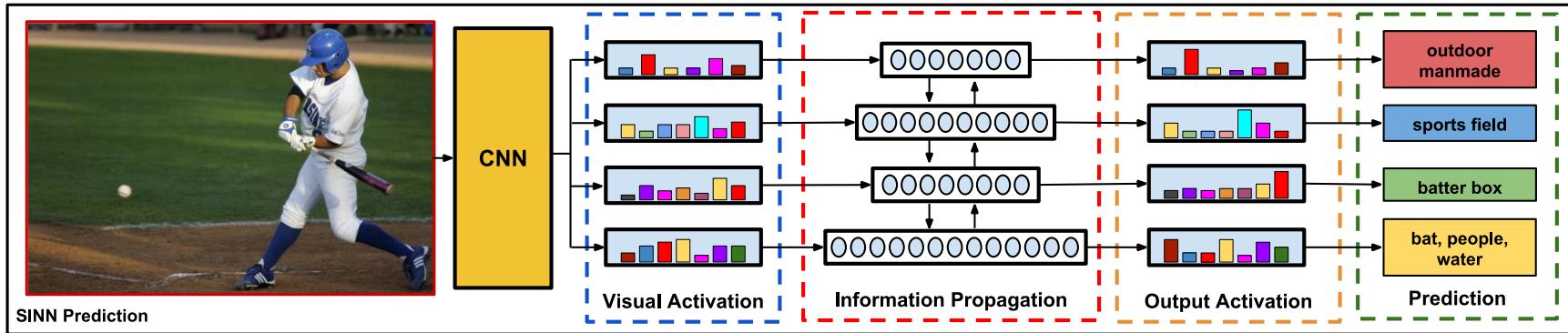
Structured Inference Neural Network (SINN)

- Evolve BINN formulation with regularization in connections



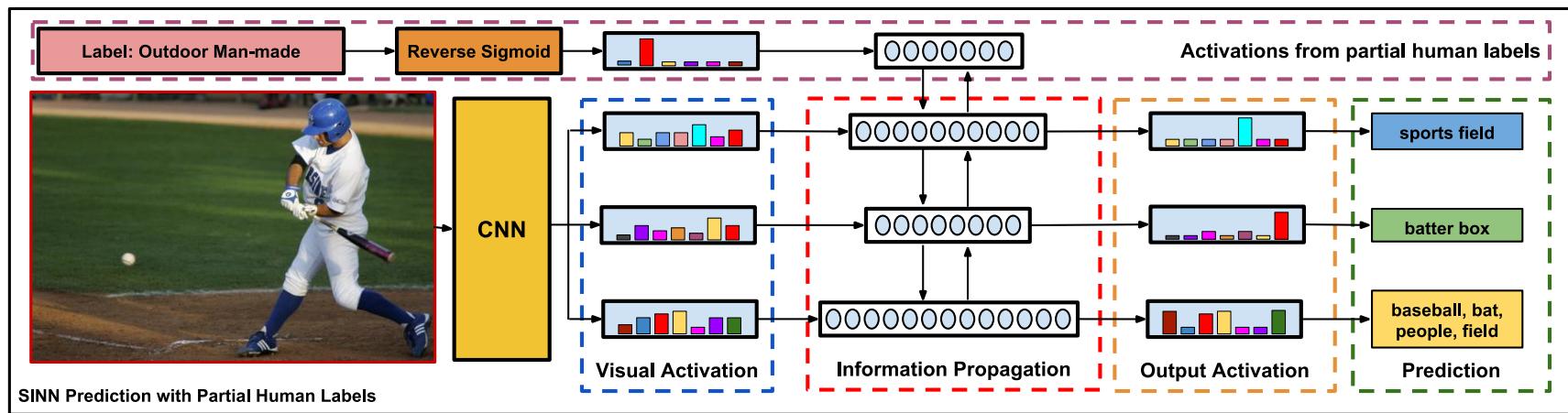
Prediction from Purely Visual Input

- Visual architecture (e.g. Convolutional Neural Networks) produces **visual activation**
- SNN implements **Information propagation** bidirectionally and produces refined **output activation**



Prediction with Partially Observed Labels

- **Reverse Sigmoid** neuron produces activation from Partial labels
- **SINN** adapts both **visual activation** and **activation from partial labels** to infer the remaining labels



Datasets

- Evaluate method with two types of experiments on three datasets

Animals with Attributes
[Lampert et al. 2009]

Labels

28 taxonomy
terms
50 animal classes
85 attributes

Task: predict entire label
set

- Taxonomy terms are constructed from Word Net as [Hwang et al. 2012]
- Knowledge graph constructed by combining class-attributes graph with taxonomy graph

NUS-WIDE
[Chua et al. 2009]

Labels

698 image
groups
81 concepts
1000 tags

Task: predict 81 concepts
with observing
tags/image groups

- Knowledge graph produced by Word Net using semantic similarity
- 698 image groups constructed from image meta data

SUN 397

[Xiao et al. 2012]

Labels

3 coarse
16 general
397 fine-
grained

Task 1: predict entire
label set

Task 2: predict fine-
grained scene given
coarse scene category

- Knowledge graph provided by dataset

Ex2: Inference from partial labels (NUS-WIDE)

- Produce predictions given partial 1k tags and 698 image groups

Ground Truth: railroad
CNN + Logistic: statue
buildings person
Our Predictions: railroad
person sky

Ground Truth: animal grass
water dog
CNN + Logistic: grass
person animal
Our Predictions: water
animal dog

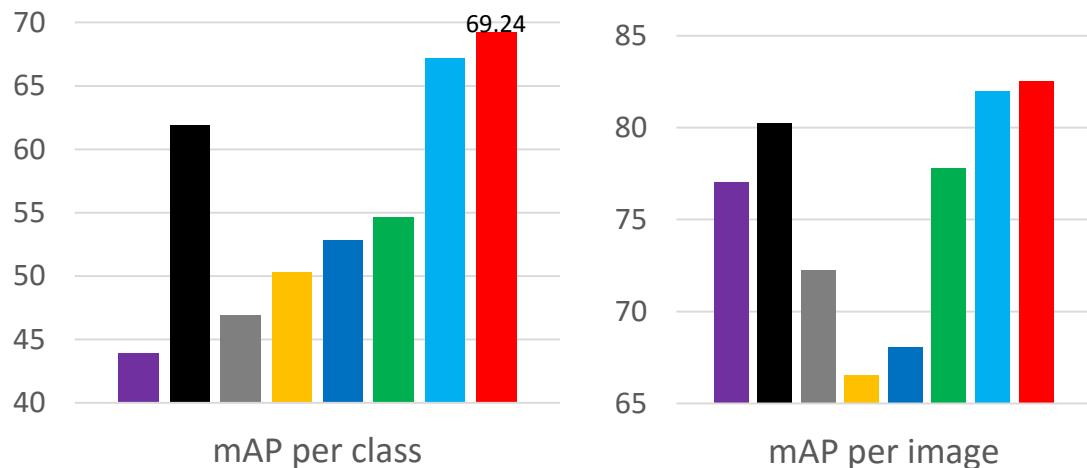
Ground Truth: rainbow
clouds sky
CNN + Logistic: clouds
water sky
Our Predictions: rainbow
clouds sky

Ground Truth: food water
CNN + Logistic: food
plants flower
Our Predictions: food
plants water

Correct predictions are marked in **blue** while incorrect are marked in **red**

Ex2: Inference from partial labels (NUS-WIDE)

- Evaluate on standard 81 ground truth classes of NUSWIDE
- **Outperform all baselines by large margin**



- 1k tags + groups + CNN + SINN
- 1k tags + CNN + SINN
- 1k tags + groups + CNN + Logistics
- 1k tags + groups + Logistics
- 1k tags + Logistics
- CNN + Logistics
- 5k tags + Tag neighbors [Johnson et. al. 2015]
- 5k tags + Logistics [Johnson et. al. 2015]

Ex2: Inference with partial labels (SUN397)

- Produce predictions given coarse-level labels (3 coarse categories)

CNN + Logistic: campus
Observed Label: outdoor/man-made
Our Predictions: abbey
Ground Truth: abbey

CNN + Logistic: building facade
Observed Label: outdoor/man-made
Our Predictions: library/outdoor
Ground Truth: library/outdoor

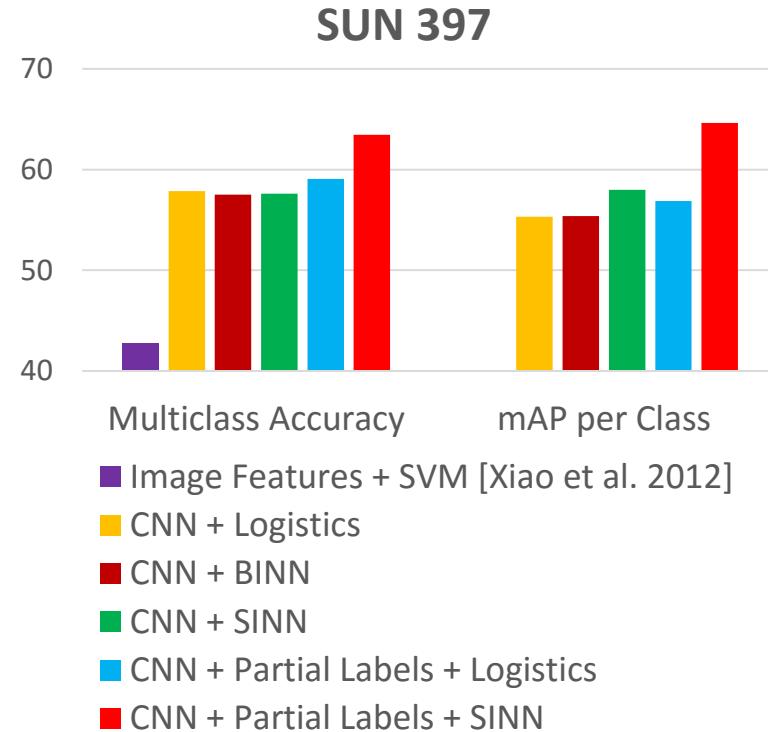
CNN + Logistic: patio
Observed Label: outdoor/natural; outdoor/man-made
Our Predictions: picnic area
Ground Truth: picnic area

CNN + Logistic: operating room
Observed Label: indoor
Our Predictions: dentists office
Ground Truth: dentists office

Correct predictions are marked in **blue** while incorrect are marked in **red**

Ex2: Inference with partial labels (SUN397)

- Evaluate on 397 fine-grained scene categories
- **Significantly improved performance**



Summary

- Inference in structured label space
- Relations within and across levels of a label space
- Model positive and negative correlations between labels in end-to-end trainable model

Conclusion

- Methods for handling *structures* in deep networks
 - **Spatial structure**: learning gating functions to connect people for group activity recognition [Deng, Vahdat, Hu, Mori CVPR 2016]
 - **Temporal structure**: hierarchies of long short-term memory models for group activities [Ibrahim, Muralidharan, Deng, Vahdat, Mori CVPR 2016]
 - **Label structure**: message passing algorithms for multi-level image labeling; purely from image data or with partial labels [Hu, Zhou, Deng, Liao, Mori CVPR 2016]

Acknowledgement

