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Outline

e Related Work
— Distance based classifier
— NNC, NSC, SRC and CRC

e ProCRC

— Probabilistic collaborative subspace

— Probabilistic representation of samples outside the
subspace

— Probability to each class-specific subspace
— The ProCRC model

 Experimental Results
e Discussions and Conclusion
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COMPUTING

Distance-based classifier

e Problem:
 Training data matrix: X = [X, X, ..., Xi].
e X;, k=1,2,..,K Is the sample matrix of class k.
e How to classify a given test sample y?

e (Classification by distance
* Define the distance from y to class k:

di = d(y, Xy)

o How long?
» Classification rule: .‘_’ow — ’

Label(y) = argmin,{d,}
e Question: how to define d;?
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COMPUTING

Nearest neighbor classifier (NNC)

* NNC

d(y, X)) = min;d(y, x;.;) = min; ||y — x|,

e The coefficients can written as

.
1 ifl = argminiHy — xki”i
ak,l — <

\ 0 else
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COMPUTING

Nearest subspace classifier (NSC)

* NSC

a; = argming, |ly — X a2

e NSC uses all the training
samples within each
class X;, to compute the
distance from query
sample y to class k.

e ><)
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Sparse representation based classification
(SRC, Wright, et al., PAMI09)

e SRC
a = argmin,{||y — Xal|5 + 1| «]|{}

 SRC uses the training
samples across all
classes X to compute
the coefficients of all
classes simultaneously.

Qb PO UNIVERSITY DEPARTMENT OF COMPUTING 6
i EiLIU_T LR R 5




COMPUTING

Collaborative representation based
classification (CRC, Zhang, et al., ICCV2011)

(@) = argmin,|ly — Xeal|l5 =y = Z_Xiai
l

e; = lly — Xi@all3 = lly = ylI3 + 1y — Xi@l3

p.* = sin®(, x) 115 Angle betiveen fyand 7 >y
i - . 2 —_— _______
sin® (X, Xi) TR
[ - y—-Xa
Angle betwe‘a; y and y; The space spanned by X

Only e;* = ||y — X;@&;||5 works for classification
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COMPUTING

Collaborative representation model

ming|ly — Xel|;, + Allall;, p,q=1o0r?2

q=2,p=1, Sparse Representation based Classification (S-SRC)

g=2,p=2, Collaborative Representation based Classification with
regularized least square (CRC_RLS)

g=1,p=1, Robust Sparse Representation based Classification (R-SRC)

dg=1,p=2, Robust Collaborative Representation based Classification

(R-CRC)
CRC_RLS has a closed-form solution; others have iterative
solutions.
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Why SRC/CRC works?

e SRC/CRC represents the query image by gallery
images from all classes. However, it uses the
representation residual by each class for
classification.

 What kind of classifier SRC/CRC is?
e Why SRC/CRC works?

S. Cai, L. Zhang, W. Zuo, and X. Feng, “A Probabilistic
Collaborative Representation based Approach for
Pattern Classification,” CVPR 2016.
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COMPUTING

Probabilistic collaborative subspace

* Training samples from K classes:
X=1X,X, ..., Xyl

e [y:the label set of all classes in X

e S:the subspace spanned by X

— Each data point x within & can be
written as: x = Xa.

e How can we characterize the confidence
that [(x) € Iy ?
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COMPUTING

Probabilistic collaborative subspace h

* We define the probability that [(x) € [y as:
P(L(x) € ly) x exp(—cllall3)
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Outside the collaborative subspace

 The query sample y usually lies outside
the collaborative subspace §. What is
the probability that y belongs to [y ?

e |t can be determined by two factors:

— Given x = Xa, how likely y has the
same class label as x?

— What is the probability that x belongs
to lX ?

COMPUTING
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Envision Future COMPUTING

Computing for the

Outside the collaborative subspace

a7,

x)),’

P(L(y)

@\ ,
- \\\ . //
\\\ 1 y;
= - \\ : /
- ~ 1 /7
~
-~ ~

-

S
ﬁ -7 4 P(l(x) € ly)
@ g Already defined
' in slides 11

P(l(y) € Iy) = P(I(y) = L(x)|l(x) € Ix) - P(I(x) € Ix)

Qb POIYTECTINIC UNTVERSITY DEPARTMENT OF COMPUTING
TrHEE T KB EFatH2Z



COMPUTING

Outside the collaborative subspace

 We adopt Gaussian kernel to measure the label-
consistent probability:

P(I(y) = 1(x)|l(x) € lx) « exp(—klly — x[|5)
e Then we have

P(L(y) € lx) x exp(—klly — Xall7 + cllall?)
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COMPUTING

Probability to each class-specific subspace

* x=Xa =Y Xpay = Yi=1 X

* The probability that x has the same class label as x;,:
P(l(x) = k|l(x) € lx) o exp(=5]lx — Xyal3)

e For a query sample y outside the space §:

P(l(y) = k) = P(I(y) = L(x)|l(x) = k) -
P(l(x) = k|l(x) € ly) - P(I(x) € ly)

Since P(L(y) = L(x)|l(x) = k) = P(L(y) = L(x)|l(x) € ly), we have
P(l(y) = k) = P(l(y) € lx) - P(I(x) = k|l(x) € lx)
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Envision Future COMPUTING

Probability to each class-specific subspace

- -~
.

query sample y @

“ o a ™

P(I(y) =k) x exp(—(lly — Xeall7 + Allell3 + vIIXe — Xpearll3))
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The ProCRC model

 Finding a common data point x = X« i.e., a, that
maximizes the joint probability:

K
max P(I(y) = 1, ..., 1(y) = K) = max nk=1p(l(") - k)

’y K
o« maxexp(~(lly — Xall3 + Alalf + % ) IIXa —Xeal)

 Applying the log-operator:

_ . AN
@ = argming(ly — Xall} + Allal + 5 ) [Xa — Xeal3)
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COMPUTING

ProCRC: classification rule

 We use the marginal probability for classification :

_ o Y ivea v A
P(I(y) = k) ccexp(=(lly — Xall; + All@ll2 + 2 IX@ — X, @ll2))

o exp(—||X@& — Xy all3)

e The classification rule is:

[(y) = argmax{P(I(y) = k)} = argmini {||Xa — X, @}
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The robust ProCRC model

 Using the Laplacian kernel to measure the label-
consistent probability:

P(l(y) = l(x)|l(x) € Iy) o< exp(—klly — x||,)

e Robust ProCRC model (R-ProCRC):

. AN
ming{lly — Xally + allal + ) 1Xa ~ Xcall3)
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Envision Future COMPUTING
Computing for the FUTURE

Handwritten digit recognition: MNIST

Number of training
samples per class

89.35 92.10 94.88 95.93

\Ne 91.06 92.86 85.29 78.26
CRC 72.21 82.22 86.54 87.46
SRC 380.12 85.63 89.30 92.70
CROC 91.06 92.86 89.93 89.37
ProCRC 92.16 94.56 95.58 95.88

O\ |74 61721217
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Envision Future COMPUTING
Computing for the FUTURE

Handwritten digit recognition: USPS

Number of training
samples per class

NSC
CRC
SRC
CROC
ProCRC

(((((((((((

Q POLYTECHNIC UNIVERSITY
A TR 5

e

93.46
93.48
89.89
92.58
93.48
93.84

95.31
93.25
91.67
93.99
93.25
95.62

95.91
90.21
92.36
95.63
91.40
96.03

OIS S\

96.30
87.85
92.79
95.86
91.87
96.43
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Envision Future COMPUTING
Computing for the FUTURE

Robust face recognition (YaleB)

e Random corruption

Pl R-SRC 97.49 9560 90.19  76.85
- R-ProCRC 98.45 98.20 93.25 82.42

e Block occlusion

R-SRC 90.42 85.64 78.89 70.09
R-ProCRC 98.12 92.62 86.42 77.16
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Envision Future COMPUTlNG

Computing for the FUTUI

Robust face recognition (AR)

e Disguise

| Disguise | Sunglasses | _Scarf _
R-SRC 69.17 69.50
R-ProCRC 70.50 69.83

=
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Envision Future COMPUTING

Computing for the FUTURE

Running time

e |ntel Core (TM) i7-5930K 3.50 GHz CPU with 32
GB RAM

e Running time (second) of different methods on
the MNIST dataset:

0.0003 0.0005 0.22 0.0009
m ProCRC R-SRC R-ProCRC

0.0005 3.57 1.81
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Envision Future COMPUTING

Computing for the

Performance with SIFT and CNN features

ve)

Ot piojpuels
6TOOA  L4IS-MO

40 human actions

9352 images

B. Yao, X. Jiang, A. Khosla, A.L. Lin, L.J. Guibas, and L. Fei-Fei. Human Action Recognition by Learning Bases of Action
Attributes and Parts. In ICCV 2011.
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Envision Future COMPUTlNG

Computing for the FUTUI

Performance with SIFT and CNN features

8.2 10.2 10.5 3.4 9.4 7.7 9.1 9.9
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200 bird species

11,788 images

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011 dataset. 2011.
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Envision Future COMPUTING

Computing for the

Performance with SIFT and CNN features

ve)
o

46.5 50.1 51.0 46.7 499 47.2 494 51.2
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102 flower categories

8,189 images

M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In CVGIP 2008.
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Envision Future COMPUTlNG
Computing for the FUTURE

Performance with SIFT and CNN features

21.1 240 263 221 246 242 245 284

(0€) 95z yo2311€d

/7.2 790 798 747 78.2 78.7 79.1 80.9

256 object categories \ <3 4 ‘-—'J . [ 4
30,608 images 1'1 %ﬁﬁ g fG'J

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007.

6IO9OA 14IS-MO4d
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Envision Future COMPUTING

Computing for the FUTURE

Comparison with state-of-the-arts

m Methods & Accuracies (%)

: ProCRC ASPD SMP CF SparBase EPM
Standford 40 fixed
80.9 75.4 53.0 51.9 45.7 42.2
CUB200- _ ProCRC NAC PN-CNN  FV-CNN  POOF
fixed
2011 78.3 81.0 75.7 66.7 56.9
: ProCRC NAC OverFeat GMP DAS BiCos
Flower 102 fixed
94.8 95.3 86.8 84.6 80.7 79.4
random ProCRC NAC VGG19 CNN-S ZF M-HMP
15 80.2 - - - 65.7 42.7
Caltech-256 30 83.3 - - - 70.6 50.7
45 84.9 - - - 72.7 54.8
60 86.1 84.1 85.1 77.6 74.2 58.0
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COMPUTING

Discussions

e Scalability with many samples per class
— use simple dictionary learning (DL) model to
compact the training set

e Large number of classes
— cluster all classes into a tree-like structure with
super-classes and perform level-wise ProCRC

e End-to-end learning with deep architectures
— Joint learning with CNN features
— E.g., DPL-CNN (CVPR16)
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Conclusions

e ProCRC provides a good probabilistic interpretation
of collaborative representation based classifiers
(NSC, SRC and CRCQ).

e ProCRC achieves higher classification accuracy than
the competing classifiers in most experiments.

e By introducing the simple dictionary learning pre-
processing stage, ProCRC is still a competitive and
efficient classifier on larger-scale datasets .

QQb POIY TECHNIC UNIVERSITY DEPARTMENT OF COMPUTING
TR T K8 BEERZ



Envision Future COMPUTING
Computing for the FUTURE

Thanks for your attention!
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