

Beyond Sharing Weights for Deep Domain Adaptation

Mathieu Salzmann
EPFL – CVLab

Joint work with A. Rozantsev and P. Fua

Domain Adaptation for Visual Recognition

Training data (source domain)

Test data (target domain)

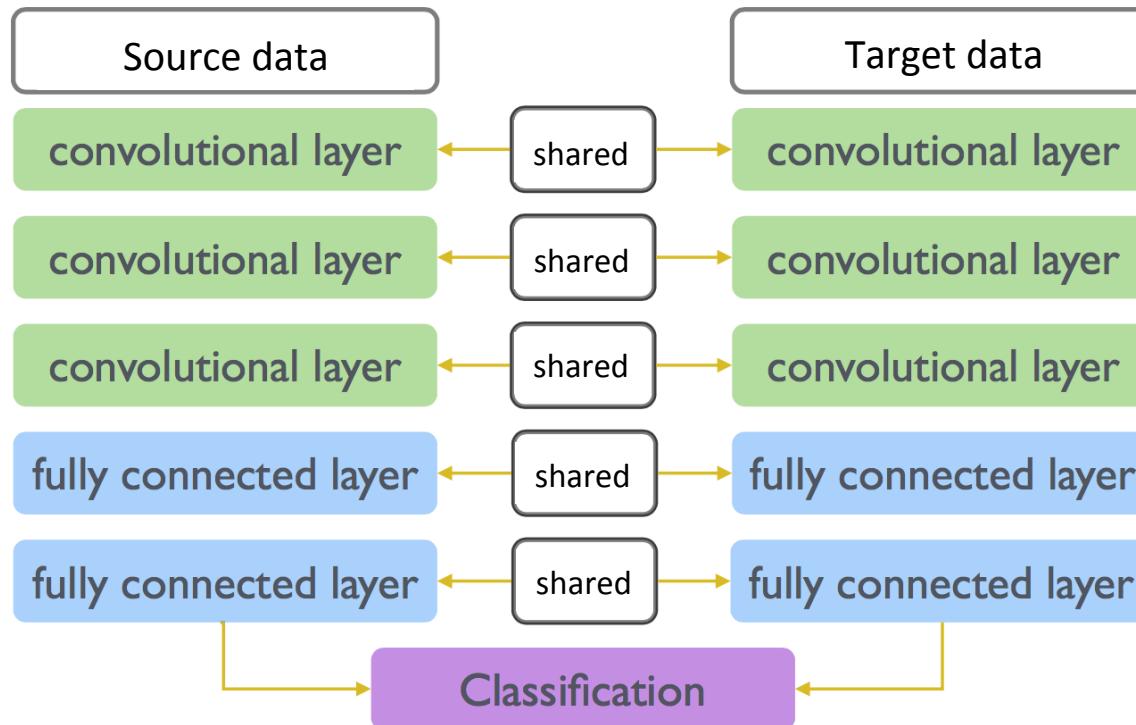
A classifier trained on one domain may perform poorly on another domain

Deep Domain Adaptation: Existing Approaches

- Siamese network
 - Chopra et al., CVPR 2005
- MMD loss
 - Tzeng et al., arXiv 2014
 - Long et al., ICML 2015
- Domain classifier
 - Ganin & Lempitsky, ICML 2015
 - Tzeng et al., ICCV 2015

Existing Approaches: Sharing Weights

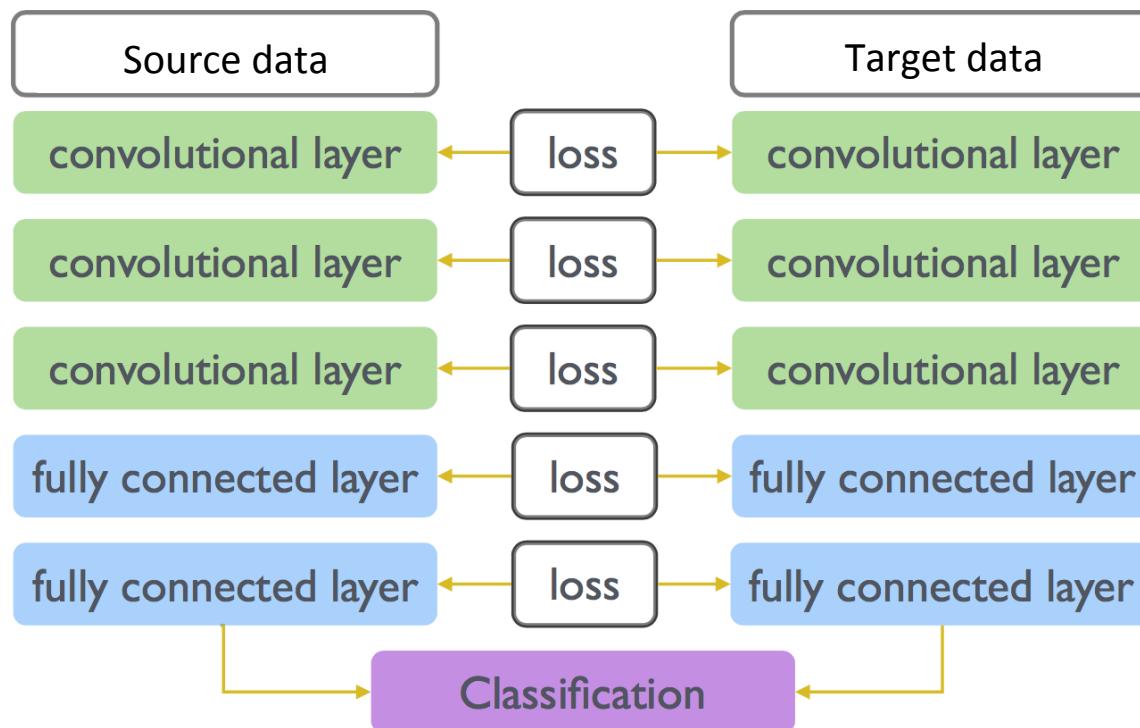
- Learn features that are invariant to the domain shift



- We believe that the domain shift should be modeled explicitly

Beyond Sharing Weights

- We allow the weights to differ
- But regularize them to remain related



Weight Loss

For each layer, we write

$$r_w(\theta_j^s, \theta_j^t) = \exp(\|a_j \theta_j^s + b_j - \theta_j^t\|^2) - 1$$

whose parameters we learn

Complete Loss

$$L(\theta^s, \theta^t | \mathbf{X}^s, Y^s, \mathbf{X}^t, Y^t) = L_s + L_t + L_w + L_{MMD}$$

L_s : Classification loss for the source samples

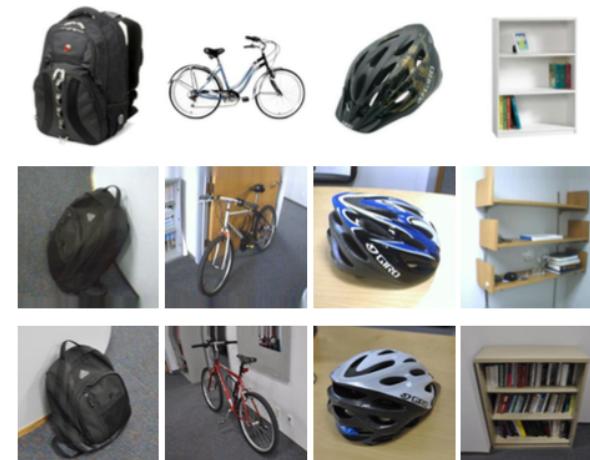
L_t : Classification loss for the target samples

L_w : Weight loss

L_{MMD} : MMD loss for the source and target distributions

Experiments

- Supervised and unsupervised domain adaptation
- Datasets:
 - UAV detection
 - Office 31
 - MNIST - USPS

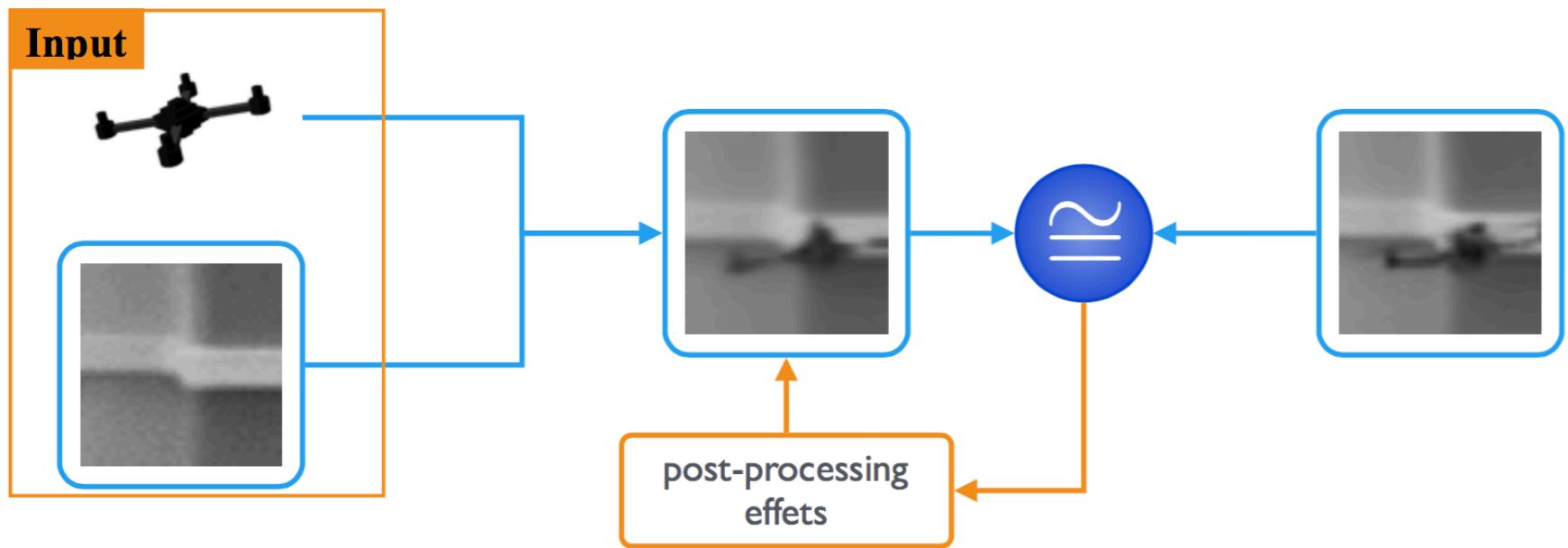


3	4	2	1	9	5	6	2	1	8
8	9	1	2	5	0	0	6	6	4
6	7	0	1	6	3	6	3	7	0
3	7	7	9	4	6	6	1	8	2
2	9	3	4	3	9	8	7	2	5
1	5	9	8	3	6	5	7	2	3
9	3	1	9	1	5	8	0	8	4
5	6	2	6	8	5	8	8	9	9
3	7	7	0	9	4	8	5	4	3
7	9	6	4	1	0	6	9	2	3

0	0	1	1	2	2	3	3	4	4
0	0	1	1	2	2	3	3	4	4
0	0	1	1	3	2	3	3	4	4
0	0	1	1	2	2	3	3	4	4
5	5	6	6	7	7	8	8	9	9
5	5	6	6	7	7	8	8	9	9
5	5	6	6	7	7	8	8	9	9
5	5	6	6	7	7	8	8	9	9
5	5	6	6	7	7	8	8	9	9

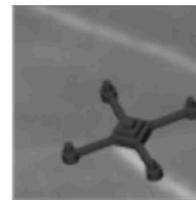
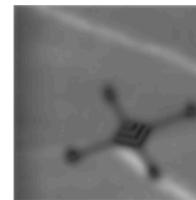
UAV Detection

Synthetic Data for UAV Detection



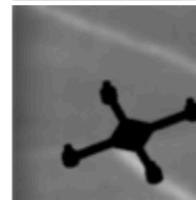
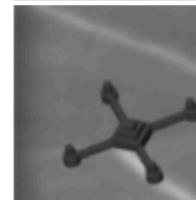
Synthetic Data for UAV Detection

Boundaries
blurring

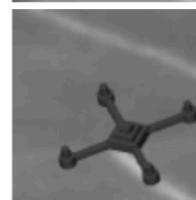
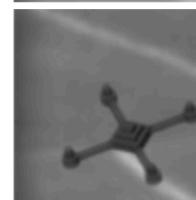


Motion
blurring

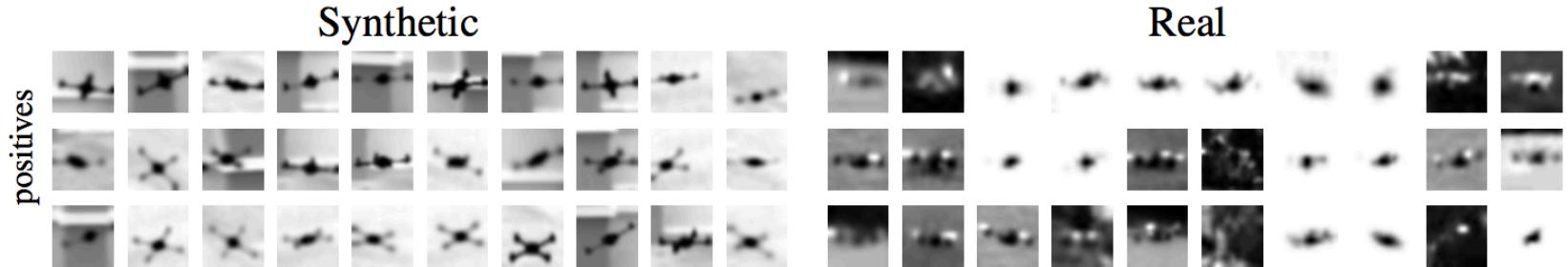
Material
properties



Gaussian noise



UAV Detection: Results



AveP
(Average Precision)

CNN (trained on Synthetic only (S)) 0.314

CNN (trained on Real only (R)) 0.575

CNN (pre-trained on S and fine-tuned on R):

Loss: L_t 0.612

Loss: $L_t + L_w$ (with fixed source CNN) 0.655

CNN (pre-trained on S and fine-tuned on R and S:)

Loss: $L_s + L_t$ [37] 0.569

DDC [7] (pre-trained on S and fine-tuned on R and S) 0.664

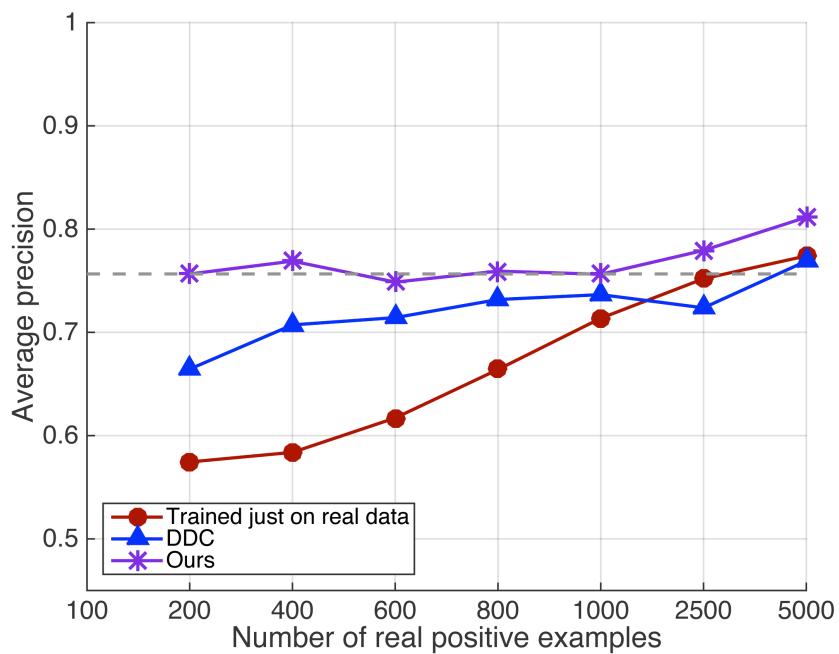
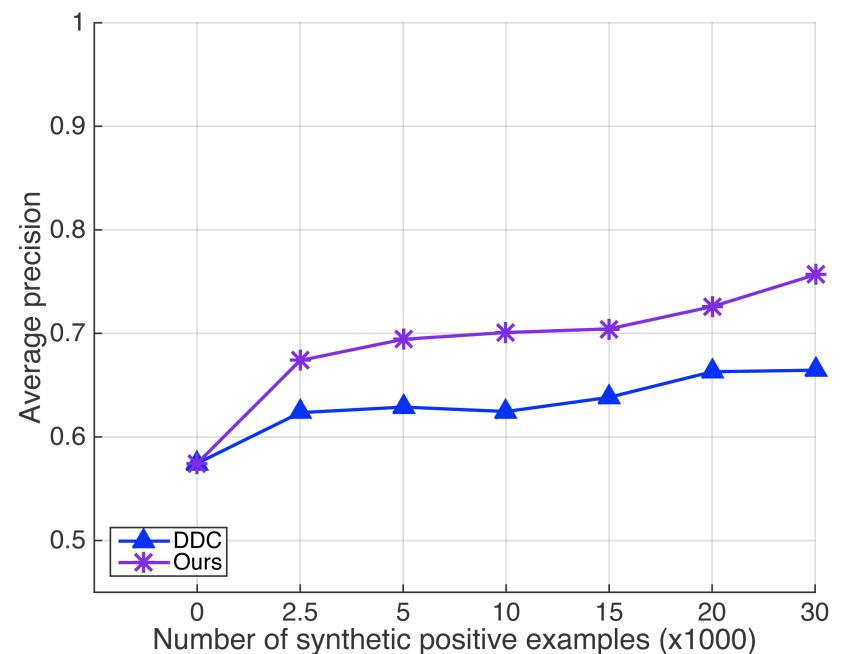
Our approach (pre-trained on S and fine-tuned on R and S)

Loss: $L_s + L_t + L_w$ 0.673

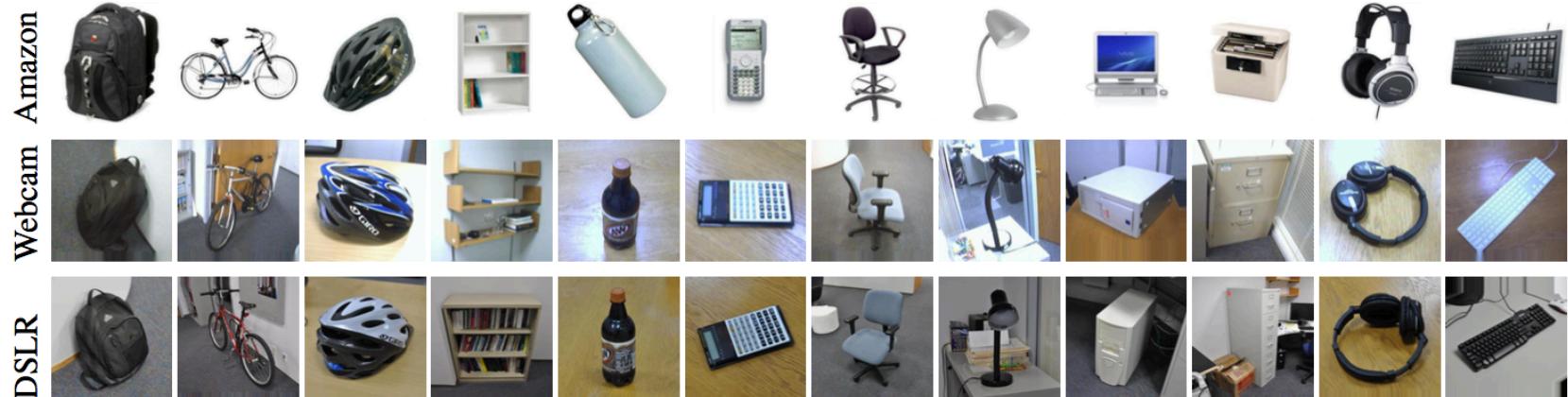
Loss: $L_s + L_t + L_{MMD}$ 0.711

Loss: $L_s + L_t + L_w + L_{MMD}$ **0.757**

UAV Detection: Influence of Synthetic Data



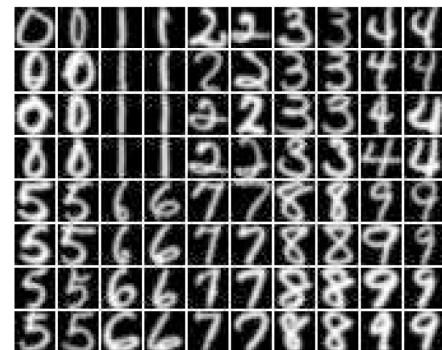
Office 31



Accuracy

	A → W	D → W	W → D	Average
GFK [17]	0.464	0.613	0.663	0.530
SA [15]	0.450	0.648	0.699	0.599
DA-NBNN [41]	0.528	0.766	0.762	0.685
DLID [18]	0.519	0.782	0.899	0.733
DeCAF ₆ +T [29]	0.807	0.948	-	-
DaNN [27]	0.536	0.712	0.835	0.694
DDC [7]	0.841	0.954	0.963	0.919
Ours	0.876	0.949	0.988	0.938

MNIST - USPS

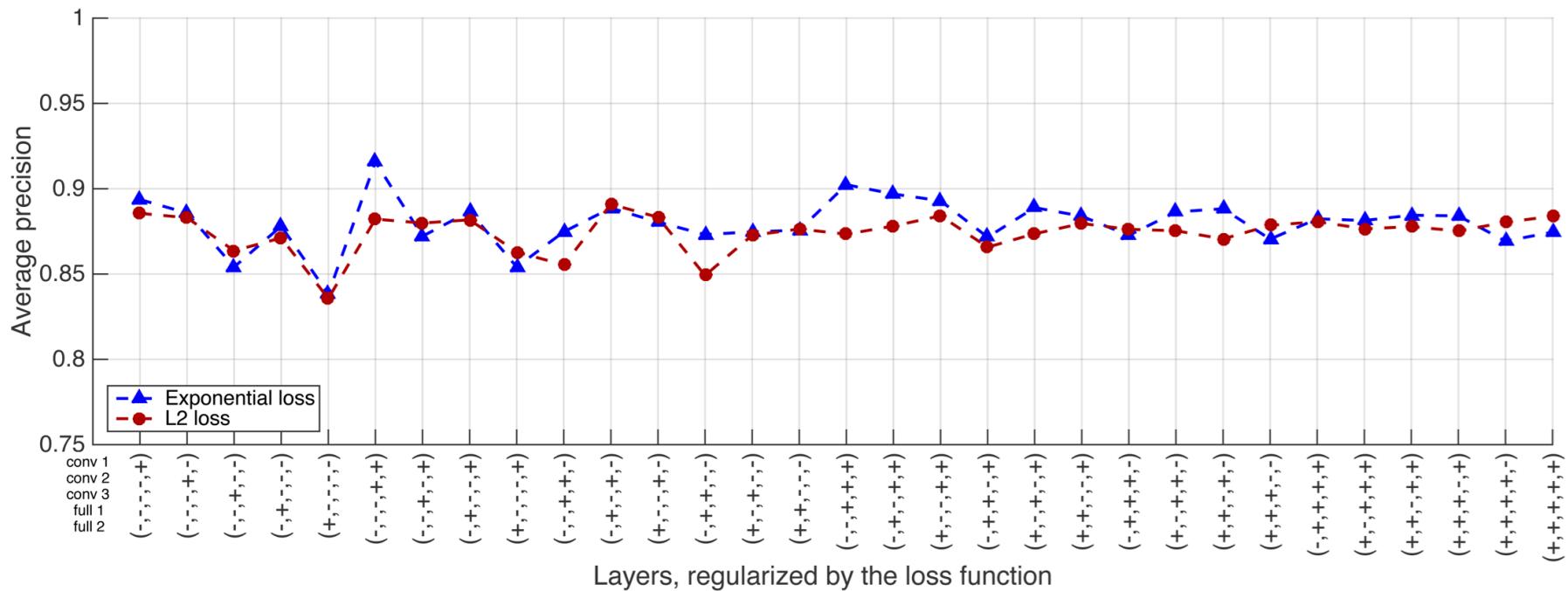


Accuracy

method	NA	PCA	SA [15]	GFK [17]	TCA [44]	SSTCA [44]	TSL [45]	JCSL [43]	DDC [7]	Ours
M→U	0.454	0.451	0.486	0.346	0.408	0.406	0.435	0.467	0.478	0.607
U→M	0.333	0.334	0.222	0.226	0.274	0.222	0.341	0.355	0.631	0.673
AVG.	0.394	0.392	0.354	0.286	0.341	0.314	0.388	0.411	0.554	0.640

Network Design

- Not all layers should be allowed to have different weights
- The set of layers that should can be obtained by validation

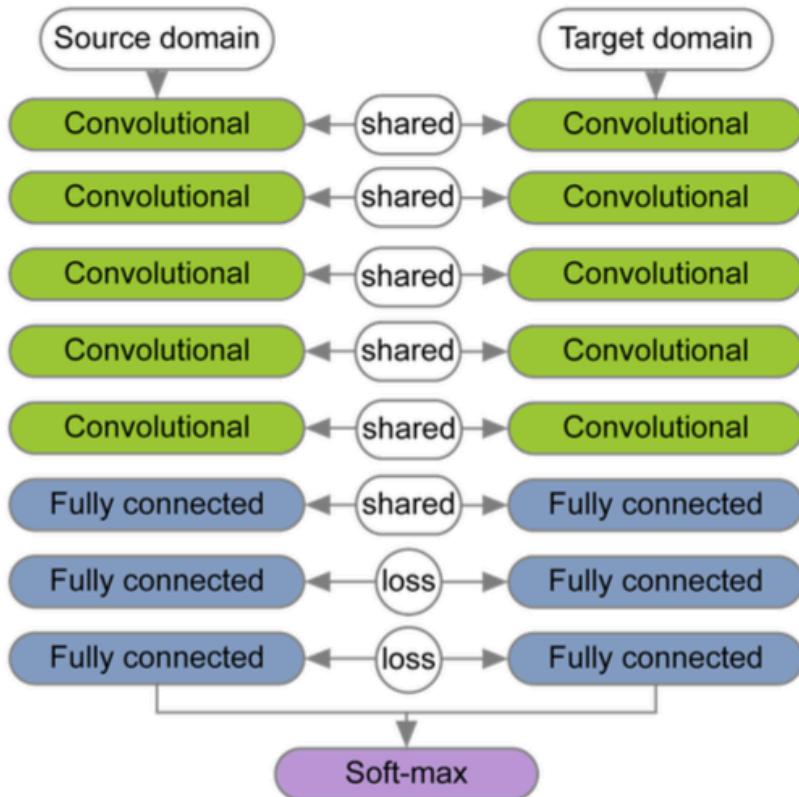


- For UAV detection, the first two convolution layers should adapt

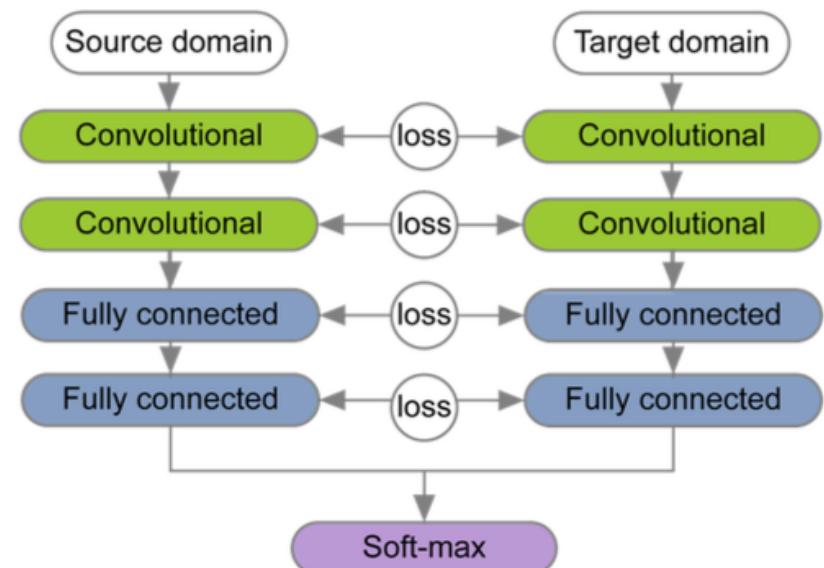
Network Design

- This is problem dependent

Office 31 network



MNIST-USPS network



Conclusions

- Deep Learning has lead to advances in domain adaptation
 - Many ideas used in the past can be translated to Deep Networks
- The weights should adapt to reflect the domain shift
 - Study more sophisticated weight transformations
 - Automatically learn which layers should be shared
- Synthetic data can help when real data is sparse
 - This can be interesting in other domains
 - Can we generate the data that is best suited to our purpose?