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Domain Adaptation for Visual Recognition

Training data (source domain) Test data (target domain)

A classifier trained on one domain may perform poorly on another domain



Deep Domain Adaptation: Existing Approaches

e Siamese network
— Chopra et al., CVPR 2005

e MMD loss
— Tzeng et al., arXiv 2014
— Longetal., ICML 2015

* Domain classifier
— Ganin & Lempitsky, ICML 2015
— Tzengetal., ICCV 2015



Existing Approaches: Sharing Weights

e Learn features that are invariant to the domain shift
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Classification

* We believe that the domain shift should be modeled explicitly



Beyond Sharing Weights

 We allow the weights to differ

* Butregularize them to remain related
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Weight Loss

For each layer, we write

T (07, 0;) = exp (||a393 +b; — 0t||2)

whose parameters we learn



Complete Loss

L(6°,60°|X°,Y*, X" Y*")=Ls + Lt + Lw + Lymp

L ¢ : Classification loss for the source samples
L : Classification loss for the target samples
L+, : Weight loss

L vivp: MMD loss for the source and target distributions



Experiments

Supervised and unsupervised domain adaptation

Datasets:

UAYV detection
Office 31

MNIST - USPS
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UAV Detection




Synthetic Data for UAV Detection
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post-processing
effets
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Synthetic Data for UAV Detection

Boundaries
blurring

Motion
blurring

Material
properties

Gaussian noise
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UAV Detection: Results

Synthetic
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AveP
(Average Precision)
CNN (trained on Synthetic only (S)) 0.314
CNN (trained on Real only (R)) 0.575
CNN (pre-trained on S and fine-tuned on R):

Loss: L, 0.612

Loss: Ly + L., (with fixed source CNN) 0.655
CNN (pre-trained on S and fine-tuned on R and S:)

Loss: Ls+ L [37] 0.569
DDC [7] (pre-trained on S and fine-tuned on R and S) 0.664
Our approach (pre-trained on S and fine-tuned on R and S)

Loss: Lgs+ Li+ Ly, 0.673

Loss: L;+ Li+ Lyvbp 0.711

Loss: L+ L+ Ly + Layvbp 0.757



UAV Detection: Influence of Synthetic Data

Average precision
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Office 31
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Accuracy
A—-W D—-W W=D Average

GFK [17] 0.464 0.613 0.663 0.530
SA [15] 0.450 0.648 0.699 0.599
DA-NBNN [41]  0.528 0.766 0.762 0.685
DLID [18] 0.519 0.782 0.899 0.733
DeCAFg+T [29] 0.807 0.948 - -
DaNN [27] 0.536 0.712 0.835 0.694
DDC [7] 0.841 0.954 0.963 0.919

Ours 0.876  0.949 0.988 0.938



MNIST - USPS
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Accuracy
method NA  PCA SA[15] GFK[17] TCA [44] SSTCA [44] TSL [45] JCSL[43] DDC[7] Ours

M—-U 0.454 0.451 0.486 0.346 0.408 0.406 0.435 0.467 0.478 0.607
U—-M 0.333 0.334 0.222 0.226 0.274 0.222 0.341 0.355 0.631 0.673
AVG. 0.394 0.392 0.354 0.286 0.341 0314 0.388 0.411 0.554 0.640



Network Design

Not all layers should be allowed to have different weights
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* The set of layers that should can be obtained by validation
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Layers, regularized by the loss function -
* For UAV detection, the first two convolution layers should adapt



Network Design

* Thisis problem dependent

Office 31 network

Source doma@ Target domain)

shared

MNIST-USPS network

CSource domaiD

(Target domain)
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Conclusions

* Deep Learning has lead to advances in domain adaptation
— Many ideas used in the past can be translated to Deep Networks

* The weights should adapt to reflect the domain shift

— Study more sophisticated weight transformations
— Automatically learn which layers should be shared

* Synthetic data can help when real data is sparse
— This can be interesting in other domains
— Can we generate the data that is best suited to our purpose?



