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Representation Learning

* Supervised learning: Expensive annotations & Poor scalability
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* G@Goal: Visual representation learning with a large, unlabeled image collection
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Prior Work - Representation Learning

- Class labels [Krizhevsky et al. NIPS'12]

- Web resources [Chen and Gupta ICCV’15; Joulin et al. ECCV’16]
- Ego-motion [Agrawal et al. ICCV’15; Jayaraman et al. ICCV’15]
- Context [Doersch et al. ICCV'15]

- Tracking [Wang and Gupta ICCV’15]

Context: instances within the same image Tracking: instances within the same video
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instance-level training data


http://papers.nips.cc/paper/4824-imagenet-classification-w
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Chen_Webly_Supervised_Learning_ICCV_2015_paper.html
http://arxiv.org/pdf/1511.02251.pdf
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Agrawal_Learning_to_See_ICCV_2015_paper.html
https://www.semanticscholar.org/paper/Learning-image-representations-equivariant-to-ego-Jayaraman-Grauman/7279ebde807a14f0d9715bc7bf53a94b1395e8e1/pdf
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.html
http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Wang_Unsupervised_Learning_of_ICCV_2015_paper.html

Main Idea - Mining

Mine category-level training samples across different images

Image pairs from the same class

Image pairs from the different classes

Unlabeled images

\

Positive pairs | | Negative pairs




Main Idea - Training

Learn visual representations for binary classification

Positive pairs  Negative pairs

Deep
Networks

Same class?
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Positive Mining

Cycle consistency: positive pairs with large appearance variations

Unlabeled images k-NN Graph Positive mining

Direct matching Cyclic matching



Negative Mining

Geodesic distance: hard negative pairs with a relatively small L2 distance

Unlabeled images k-NN Graph Negative mining

Large L2 distance Large geodesic distance



Pair-wise Training
Siamese network for binary pair classification

Negative pairs  Positive pairs 4096 4096
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Controlled Experiments (CIFAR-10)

* Evaluation on positive mining

Random Direct
-

TP rate 10.0 59.0 73.8 82.9 83.0 81.7
Accuracy 73.7 78.0 79.9 80.5 80.9 80.2

[ Accurate positive pairs & Better CNN representations }

e Evaluation on negative mining

- Random sampling | Original distance | Geodesic distance

TN rate 90.0 95.5 91.0
Accuracy 83.8 68.3 85.2

! !

Easy samples Hard samples



Controlled Experiments (CIFAR-10)

Parameter analysis
3
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Effect of different features

Accuracy 76.7 80.9 81.6

[ Cycle consistency works well on different hand-crafted features. }
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Applications

I.  Unsupervised feature learning

/ Large-scale unlabeled \

image collection

4 Task with full labels )
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Unsupervised Feature Learning

* Implementation details

- Dataset: ImageNet 2012 without any labels (~1.3M images)
- Base features: SIFT+FV
- Mining results: ~1M positives and ~13M negatives

* Cycle detection results
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Qualitative evaluation - S
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earch

& Random

Supervised

Unsupervised

Supervised

Unsupervised

13



Qualitative evaluation - Search

Unsuperwsed

Random

[ Comparable to supervised learned representations }
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Quantitative Evaluation - Classification

Comparisons of image classification performance on VOC 2007

Agrawal et al. ICCV’15 Ego-motion 52.9
Doersch et al. ICCV’'15 Context 55.3
Wang et al. ICCV’15 Tracking triplet 58.4
Ours (SIFT+FV) Matching pair 46.0
Ours (Learned features) Matching pair 56.5
Krizhevsky et al. NIPS’12 Class labels 69.5

4 )

Competitive performance with the state-of-the-art
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Significant improvement over hand-crafted features
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Mean accuracy (%)

Semi-supervised Learning

Classification results on three vision datasets
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True positive rate on three vision datasets

_ CIFAR-10 CUB-200-2011 MIT indoor-67

Random sampling 10.0
4-cycle 83.0 55.8 65.8

[ Accurate positive pairs despite small inter-class differences }
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Conclusions

Unsupervised constraint mining
- Positive mining: positive pairs with large appearance variations
- Negative mining: hard negative pairs with a relatively small L2 distance

Cycle consistency = Positive mining Geodesic distance = Negative mining

Unsupervised feature leaning
- Image search: comparable to supervised learned representations
- Image classification: competitive with the state-of-the-arts

Semi-supervised leaning
- Image classification: boosted performance over directly fine-tuning
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