The Chinese University of Hong Kong

Structured Feature Learning
for Human Pose Estimation

Xiaogang Wang

Department of Electronic Engineering,
The Chinese University of Hong Kong



-
O

e
(O

e
(Vp)
L]

U
0

O
al

-
qe

S
1L







Pose estimation result generated by our deep learning algorithm



Using CNN to localize individual joints separately is not reliable
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Heat map prediction

Fully Convolutional Networks

Benefits from better neural network architectures
VGG
GoogleNet,
ResNet

m Structures are used for post processing






Motivation: Geometric Constraints Among Body
Parts Helps in Learning Better Representation




Model structures on score maps and jointly learn
feature representations

Front-end —)
CNN

Message passing on score maps

W. Yang, W. Ouyang, H. Li, and X. Wang, “End-to-End Learning of Deformable Mixture of
Parts and Deep Convolutional Neural Networks for Human Pose Estimation,” CVPR 2016
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STRICT PCP ON THE LSP DATASET (VGG-LG)
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Model interaction between neurons in the same layer?
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e Rich information is preserved at feature map level
e Reason the correlations among body joints at the
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feature level

Input image

X. Chu, W. Ouyang, W. Yang, and X. Wang, “Structured Feature Learning for Pose Estimation,”

CVPR 2016.

e
|

ed

f\lf\
e Leédrrn

ConvNet

Structured feature

sdew 21005




 Understand the semantic meanings of feature maps
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High responding images for channel 1 for neck

High responding images for channel 3 for lower arm
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e Pass information through convolution between
feature maps and geometrical transform kernels
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B Updated
]H - L feature maps
for elbow
(b) Kernel .
(a) Feature (c) Transformed | .
maps cfearte:ll:err:;npi " Feature maps for Shifted feature maps

lower arm



Feature map update --- Torso

Input Before update
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After update

Before update

Input

After update

Shoulder

Before update

Input
e

Feature map update ---
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e Fully connected graph is not a good solution

— Large transform kernels are required to model joints in
distance

— Relationship between some joints are unstable
* Propagate information through intermediate
joints on a desighed graph

e On a bi-directional tree, feature channels at a
joint well receives information from other joints



CNN

Input image




Ag = f(hine®wW™)  Ag'=Ag
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Ay = fm6®wa4) Ay = f(Ay + A5' QW)
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Fully connected graph is not a suitable structure for our method

Fully connected graph: feature maps for shoulder which collect information directly form all
the other joints.

Tree graph: feature maps for shoulder which collect information directly from upper arm and
indirectly from elbow, lower arm and wrist.
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Experm ent Head | Torso| U.ams| L.ams| M ean
MODEC [25] - - 844 | 521 | 68.3
Tompson etal 31] | - - | 93.7 | 809 | 87.3
Chen Yuille [7] - - 97.0 | 868 | 91.9
0 urs 986 | 939 | 979 | 924 | 95.2
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Experiment Torso Head U.arms L.arms Ullegs L.legs Mean
Andriluka et al. [7] 80.9 74.9 46.5 26.4 67.1 60.7 35.7
Yang&Ramanan [37] 82.9 79.3 56.0 30.8 70.3 67.0 62.8
Pishchulin et al. [27] 87.5 8.1 54.2 339 15.7 68.0 62.9
Eichner&Ferrari et al. [10] 86.2 80.1 56.5 374 743 69.3 64.3
Ouyang et al. [1¥] 85.8 83.1 63.3 46.6 76.5 7.2 63.6
Pishchulin ef al. [23] 88.7 85.1 61.8 45.0 78.9 13.2 69.2
Chen& Yuille [7] 92.7 87.8 69.2 554 82.9 71.0 75.0
Ours 95.4 89.4 76.0 64.3 87.6 83.5 80.8
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(a) Multi-layer neural network (b) Structured output space (c) Structured hidden layer (d) Our implementation
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X. Chu, W. Ouyang, H. Li, and X. Wang, “ CRF-CNN: Modeling Structured Information in Human
Pose Estimation,” NIPS 2016.



[

Pf\ f\lll @Y
CUIIUI

ons

S

Structural information is important in feature learning

End-to-end joint training bridges the gap between structure
modeling and feature learning

A new message passing layer, which is flexible to tree-
structured/loopy relational graph

Feature level information passing delivers more detailed
descriptions about body joints than score maps. Itis
implemented with geometrical transform kernels.

Propose a CRF-CNN framework to simultaneously model
structural information in both output and hidden feature
layers in a probabilistic way.



Wanli Ouyang HongshenglLi Xiaogang Wang



