Chapter 1. Digital Data Representation and Communication
Introduction

• Digital media is multimedia driven by computers. You can see it, hear it, maybe even touch it, and certainly interact with it.

• What draws most people to a study of digital media is the satisfaction of making something that communicates, entertains, or teaches.

• We consider the topics in digital media work—choosing color modes, compressing files, identifying aliased frequencies, filtering, transforming, and creatively editing.

• We present the mathematical and algorithmic procedures upon which the tools are built.
Focus of this Course

• This book is organized around three main media—digital imaging, audio, and video—woven together at the end with multimedia programming.

• Topics in each chapter are motivated by activities done in digital media application programs, but they are presented from a mathematical or conceptual perspective.
Chapter Organization

• This chapter covers concepts that are relevant to more than one medium.

• The digitization process of sampling and quantization is introduced, to be revisited in the context of image and sound in later chapters. Analog-to-digital conversion is where it all begins.

• We then move on to fundamentals of data communication and data storage. A survey of compression methods covers concepts relevant to all media.

• We conclude the chapter with an overview of standards and standardization organizations.
Analog and digital data

- **Analog data**
 - Takes on continuous values
 - E.g. voice, video

- **Digital data**
 - Takes on discrete values
 - E.g. text, integer

- Converting the continuous phenomena of images, sound, and motion into a discrete representation that can be handled by a computer is called **analog-to-digital conversion**.
Analog data compared with digital data

- Analog data > digital data
 - More information -> more precise and better quality

- Digital data > Analog data
 - Size -> transmitted efficiently
 - Reliably -> less affected by noise when transmitted

- Computers can only work with digital data.
Data and signals

- Usually use digital signals for digital data and analog signals for analog data
- Can use analog signal to carry digital data
 - Modem
- Can use digital signal to carry analog data
 - Compact Disc audio
Analog Signals Carrying Analog and Digital Data

Analog Signals: Represent data with continuously varying electromagnetic wave

Analog Data (voice sound waves) → Telephone → Analog Signal

Digital Data (binary voltage pulses) → Modem → Analog Signal (modulated on carrier frequency)
Digital Signals Carrying Analog and Digital Data

Digital Signals: Represent data with sequence of voltage pulses

Analog Signal Codec Digital Signal

Digital Data Digital Transceiver Digital Signal
Fourier transform

- Fourier analysis shows that any periodic signal can be decomposed into an infinite sum of sinusoidal waveforms.
- Fourier transform makes it possible to store a complex sound wave in digital form, determine the wave’s frequency components, and filter out components that are not wanted.
An example of grayscale image
A/D Conversion

- Analog-to-digital conversion requires two steps: *sampling* and *quantization*.
- The first step, sampling, chooses discrete points at which to measure a continuous phenomenon (*signal*).
- For images, the sample points are evenly separated in space. For sound, the sample points are evenly separated in time.
- The number of samples taken per unit time or unit space is called the *sampling rate* or, alternatively, the *resolution*.
- The second step, quantization, requires that each sample be represented in a fixed number of bits, called the *bit depth*. The bit depth limits the precision with which each sample can be represented.
Sampling and Aliasing

- **Undersampling**: sampling rate does not keep up with the rate of change in the signal.
- **Aliasing** in a digital signal arises from undersampling and results in the sampled discrete signal cannot reconstruct the original source signal.

Audio wave at 637 Hz

637 Hz audio wave sampled at 770 Hz
Nyquist theorem

- The Nyquist theorem specifies the sampling rate needed for a given spatial or temporal frequency.
- To guarantee that no aliasing will occur, you must use a sampling rate that is greater than twice the maximal frequency in the signal being sampled.
- Let f be the frequency of a sine wave. Let r be the minimum sampling rate that can be used in the digitization process such that the resulting digitized wave is not aliased. Then the **Nyquist frequency** r is
 \[r = 2f \]
Quantization

- Let n be the number of bits used to quantize a digital sample. Then the maximum number of different values that can be represented is $m = 2^n$.

- Quantization error
SNR and SQNR

• Signal-to-noise ratio (SNR) can generally be defined as the ratio of the meaningful content of a signal versus the associated noise.

• In analog data communication, SNR is defined as the ratio of the average power in the signal versus the power in the noise level.

• For a digitized signal, the signal-to-noise ratio is defined as the ratio of the maximum sample value versus the maximum quantization error. This can also be called \textit{signal-to-quantization-noise ratio (SQNR)}.
Let n be the bit depth of a digitized media, Then the SQNR is

$$SQNR = 20 \log_{10}(2^n) \text{ (in dB)}$$

Signal-to-quantization-noise ratio is directly related to dynamic range.

Dynamic range, informally defined, is the ratio of the largest-amplitude sound (or color, for digital images) and the smallest that can be represented with a given bit depth.
Dynamic Range

- With three bits, you have eight colors. You can spread these colors out over a wide range or a narrow range.
- In either case, the dynamic range is the same, dictated by the bit depth, which determines the maximum error possible (resulting from rounding to available colors) relative to the range of colors represented.
Table 1.4 Example File Sizes for Digital Image, Audio, And Video

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution: 1024 pixels × 768 pixels</td>
<td>Sampling rate: 44.1 kHz (44,100 samples per second)</td>
<td>Frame size: 720 pixels × 480 pixels</td>
</tr>
<tr>
<td>Total number of pixels: 786,432</td>
<td>Bit depth: 32 bits per sample (16 i.e., 4 bytes)</td>
<td>Bits per pixel: 24</td>
</tr>
<tr>
<td>Color mode: RGB</td>
<td>Number of minutes: one minute</td>
<td>Frame rate: ~ 30 frames/s</td>
</tr>
<tr>
<td>Bits per pixel: 24 (i.e., 3 bytes)</td>
<td>Total number of bits: 84,672,000 (= 10,584,000 bytes)</td>
<td>Number of minutes: one minute</td>
</tr>
<tr>
<td>Total number of bits: 18,874,368 (= 2,359,296 bytes)</td>
<td>File size: 10.09 MB for one minute</td>
<td>Total image requirement:</td>
</tr>
<tr>
<td>File size: 2.25 MB</td>
<td>Data rate of the file: 1.35 Mb/s</td>
<td>14,929,920,000 bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Audio requirement: 84,672,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(See column 2.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total number of bits: 15,014,592,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(= 1,876,824,000 bytes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>File size: >1.7 GB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data rate of the file: 238.65 Mb/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(This calculation doesn’t take chrominance subsampling into account. See Chapter 6 for a discussion of subsampling.)</td>
</tr>
</tbody>
</table>
Storage Media and Their Capacity

<table>
<thead>
<tr>
<th>Storage medium</th>
<th>Maximum capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portable Media</td>
<td></td>
</tr>
<tr>
<td>CD (Compact Disk)</td>
<td>700 MB</td>
</tr>
<tr>
<td>DVD (Digital Versatile Disc or Digital Video Disk), standard one sided</td>
<td>4.7 GB standard; 8.5 GB dual-layered</td>
</tr>
<tr>
<td>DVD video or high capacity</td>
<td>17–27 GB</td>
</tr>
<tr>
<td>Memory stick or card</td>
<td>8 GB</td>
</tr>
<tr>
<td>HD-DVD (High Definition DVD), standard one-sided</td>
<td>15 GB standard; 30 GB dual-layered</td>
</tr>
<tr>
<td>Blu-ray Disk</td>
<td>25 GB standard; 50 GB dual-layered</td>
</tr>
<tr>
<td>Flash drive</td>
<td>64 GB</td>
</tr>
<tr>
<td>Permanent Media</td>
<td></td>
</tr>
<tr>
<td>Hard disk drive</td>
<td>1 terabyte (1000 GB)</td>
</tr>
</tbody>
</table>
Data Communication

• Analog and digital data communication
• Baseband transmission is used across wire and coaxial cable, but it works well only across relatively short distances. Noise and attenuation cause the signal to degrade as it travels over the communication channel.

Waveform for part of the spoken word “boo”
Baseband digital transmission.
Modulation

- **modulated data transmission** (or *bandpass transmission*), is based on the observation that a continuously oscillating signal degrades more slowly and thus is better for long distance communication.
- Modulated transmission makes use of a *carrier signal* on which data are “written.”
- A carrier signal—for example, a beam of light passing through optical fiber or radio waves across free space—that is made to oscillate in a regular sinusoidal pattern at a certain frequency.
Modulation Methods

• The three basic methods for modulating a carrier wave are **amplitude modulation**, **frequency modulation**, and **phase modulation**.

• In amplitude modulation, the amplitude of the carrier signal is increased by a fixed amount each time a digital 1 is communicated; in frequency modulation, the frequency is changed; and in phase modulation, the phase is shifted.
Summary of analog and digital communication

• Both analog and digital data can be transmitted by means of copper wire, coaxial cable, optical fiber, and free space. The medium of transmission does not determine whether the communication is analog or digital. The form of the data does.

• Digital data can be transmitted by means of a baseband signal or a bandpass (i.e., modulated) signal. The baseband signal uses discrete pulses representing 0s and 1s. The modulated signal uses a carrier frequency and an encoding of data based on periodically altering the frequency, amplitude, or phase of the signal.

• Both analog and digital data can be communicated by means of a modulated signal. A carrier signal can be modulated to contain either analog or digital data.
System Bandwidth

- Define: the maximum rate of change of a signal
 - Change: first there must be one thing, and then another—two different pieces of information
 - Example:
 A transmission system with a bandwidth of 5000 Hz.

 ✓ Every 1/5000th of a second, this system can communicate two things. If one voltage represents a 0 and another represents a 1, then the system can transmit a 0 and a 1 every 1/5000th of a second.

 ✓ It can transmit 10,000 bits every second.
System Bandwidth

• Assume that a signal is sent with two possible signal levels and a bandwidth of b Hz. Then the data rate, d, in bits/s is

$$d = 2b$$

• What if more than one signal level is permitted?

 • **Multilevel coding**
 More than two signal level and more than one bit can be communicated at a time

 • Assume that a signal is set with k possible signal levels and a bandwidth of b Hz, then the data rate d in bits/s is

$$d = 2b \log_2(k)$$
Data Rate

- Example for multilevel coding
- \(K=4 \)
- \(\log_2(k)=2 \)
- Translate 4 bits per cycle
Signal Bandwidth

• For a signal that can be represented as a periodic waveform, let f_{max} be the frequency of the highest-frequency component and let f_{min} be the frequency of the lowest-frequency component. Then the width of the signal, w, is

$$w = f_{\text{max}} - f_{\text{min}}$$
Bandwidth of Communication Channel

- When data is communicated across the airwaves, they are sent along some particular channel, which is a band of frequencies.
- The sender communicates within its designated frequency band, and the receiver tunes to that band to receive the communication.
- The range of frequencies allocated to a band constitutes the **bandwidth of a channel**.
- Ex. each AM radio station is allocated a bandwidth of 10 kHz. FM radio stations have bandwidths of 200 kHz. Analog television has a bandwidth of about 6 MHz. HDTV requires a bandwidth of approximately 20 MHz.
Data Rate

• Bandwidth is measured in cycles per second—Hertz.
• Data rate is measured in bits per second.
• A refinement of the relationship between data rate and bandwidth is given by Shannon’s theorem, which quantifies the achievable data rate for a transmission system that introduces noise.

 According to Shannon’s theorem, \(c = b \log_2(1+ s/p) \).

 \(s \) is a measure of the signal power, and \(p \) is a measure of the noise power.
Baud Rate

- Baud rate: the number of changes in the signal per second, as a property of sending and receiving devices.
- Baud rate is close in meaning to bandwidth as bandwidth relates to digital data communication. The main difference is that baud rate is usually used to refer to sending and receiving devices, whereas bandwidth has other meanings related to frequencies over the airwaves.
- To be precise, baud rate and bit rate are related by the equation $d = 2b \log_2(k)$.
Compression

- Digital media files are usually very large, and they need to be made smaller—compressed
- Without compression
 - Won’t have storage capacity
 - Won’t be able to communicate them across networks without overly taxing the patience of the recipients
- Compression Rate
 - A file that is reduced by compression to half its original size
 - 50% compression or compression rate is 2:1
- Compression algorithms can be divided into two basic types: **lossless compression** and **lossy compression**.
Types of compression

• Lossless compression
 • No information is lost between the compression and decompression steps
 • Reduces the file size to fewer bits
 • Method:
 ✓ Run-Length encoding (RLE)
 ✓ Entropy encoding
 ✓ Arithmetic encoding
Types of compression

• Lossy compression
 • Sacrifice some information which is not important to human perception
 ✓ In image files: subtle changes in color that the eye cannot detect
 ✓ In sound files: changes in frequencies that are imperceptible to the human ear
 • Method:
 ✓ Transform encoding
Types of compression

- Dictionary-based methods (e.g. LZW compression) use a look-up table of fixed-length codes.
- Entropy compression uses a statistical analysis of the frequency of symbols and achieves compression by encoding more frequently-occurring symbols with shorter code words.
- Arithmetic encoding is also based on statistical analysis, but encodes an entire file in a single code word rather than creating a separate code for each symbol.
- Adaptive methods gain information about the nature of the file in the process of compressing it, and adapt the encoding to reflect what has been learned at each step.
- Differential encoding is a form of lossless compression that reduces file size by recording the difference between neighboring values rather than recording the values themselves.
Run-Length encoding (RLE)

• RLE is a simple example of lossless compression, being used in image compression.
• For example, BMP file optionally use RLE
• Instead of storing value of each pixel, to store number pairs (c,n).
 • c: grayscale value
 • n: how many consecutive pixels have that value
Run-Length encoding (RLE)

• Example 1
 • Data sequence:
 255 255 255 255 255 242 242 242 242 238 238 238 238 238 238 255 255 255 255
 • Encoding result:
 (255, 6), (242, 4), (238, 6), (255, 4)

• Example 2
 If one byte is used to represent each \(n \), then the largest value for \(n \) is 255. If 1000 consecutive whites exist in the file.
 • Encoding result:
 (255, 255), (255, 255), (255, 255), (255, 235)

Choose the size of \(n \) is important
Run-Length encoding (RLE)

• Example 3
 • Data sequence:
 255 254 253 252 251 250
 • Encoding result:
 (255, 1), (244, 1), (253, 1), (252, 1), (251,1), (250,1)
 • RLE is not suitable for those sequence which has few repetition.
 • Any lossless compression algorithm and for any length file, there will always exist at least one case where the algorithm does not reduce the size of an input file of that length.
Entropy encoding

• Using fewer bits to encode symbols that occur more frequently, while using more bits for symbols that occur infrequently

• Shannon’s equation, below, gives us a way a judging whether our choice of number of bits for different symbols is close to optimal.

\[H(S) = \eta = \sum_{i} p_i \log_2 \left(\frac{1}{p_i} \right) \]

• S be a string of symbols and \(p_i \) be the frequency of the \(i^{th} \) symbol in the string.
Entropy encoding

- Applying *Shannon’s entropy equation*, you can determine an optimum value for the average number of bits needed to represent each symbol-instance in a string of symbols, based on how frequently each symbol appears.
- Shannon proves that you can’t do better than this optimum.
Example of entropy encoding

Example 1
An image file that has 256 pixels, each pixel of a different color. Then the frequency of each color is 1/256. Thus, Shannon’s equation reduces to

$$\sum_{0}^{255} \frac{1}{256} \left(\log_2 \left(\frac{1}{1/256} \right) \right) = \sum_{0}^{255} \frac{1}{256} \left(\log_2 (256) \right) = \sum_{0}^{255} \frac{1}{256} (8) = 8$$

This means that the average number of bits needed to encode each color is eight, which makes sense in light of the fact that $\log_2 256 = 8$
Example 2
An image file of 256 pixels and only eight colors

\[H(S) = \eta = \sum_i p_i \log_2 \left(\frac{1}{p_i} \right) \]

<table>
<thead>
<tr>
<th>Color</th>
<th>Frequency</th>
<th>Optimum Number of Bits to Encode This Color</th>
<th>Relative Frequency of the Color in the File</th>
<th>Product of Columns 3 and 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>black</td>
<td>100</td>
<td>1.356</td>
<td>0.391</td>
<td>0.530</td>
</tr>
<tr>
<td>white</td>
<td>100</td>
<td>1.356</td>
<td>0.391</td>
<td>0.530</td>
</tr>
<tr>
<td>yellow</td>
<td>20</td>
<td>3.678</td>
<td>0.078</td>
<td>0.287</td>
</tr>
<tr>
<td>orange</td>
<td>5</td>
<td>5.678</td>
<td>0.020</td>
<td>0.111</td>
</tr>
<tr>
<td>red</td>
<td>5</td>
<td>5.678</td>
<td>0.020</td>
<td>0.111</td>
</tr>
<tr>
<td>purple</td>
<td>3</td>
<td>6.415</td>
<td>0.012</td>
<td>0.075</td>
</tr>
<tr>
<td>blue</td>
<td>20</td>
<td>3.678</td>
<td>0.078</td>
<td>0.287</td>
</tr>
<tr>
<td>green</td>
<td>3</td>
<td>6.415</td>
<td>0.012</td>
<td>0.075</td>
</tr>
</tbody>
</table>

2.006
Result of the Shannon-Fano algorithm applied to compression

<table>
<thead>
<tr>
<th>Color</th>
<th>Frequency</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>black</td>
<td>100</td>
<td>00</td>
</tr>
<tr>
<td>white</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>yellow</td>
<td>20</td>
<td>010</td>
</tr>
<tr>
<td>orange</td>
<td>5</td>
<td>0110</td>
</tr>
<tr>
<td>red</td>
<td>5</td>
<td>1110</td>
</tr>
<tr>
<td>purple</td>
<td>3</td>
<td>0111</td>
</tr>
<tr>
<td>blue</td>
<td>20</td>
<td>110</td>
</tr>
<tr>
<td>green</td>
<td>3</td>
<td>1111</td>
</tr>
</tbody>
</table>
What are the problems?

- Each symbol must be treated individually
- Each symbol has its own code
- Code must be represented in an integral number of bits
Arithmetic encoding - 1

- Also beginning with a list of the symbols in the input file and their frequency of occurrence
- Example

A file contains 100 pixels in five colors

<table>
<thead>
<tr>
<th>Color</th>
<th>Frequency Out of Total Number of Pixels in File</th>
<th>Probability Interval Assigned to Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>black (K)</td>
<td>40/100 = 0.4</td>
<td>0 – 0.4</td>
</tr>
<tr>
<td>white (W)</td>
<td>25/100 = 0.25</td>
<td>0.4 – 0.65</td>
</tr>
<tr>
<td>yellow (Y)</td>
<td>15/100 = 0.15</td>
<td>0.65 – 0.8</td>
</tr>
<tr>
<td>red (R)</td>
<td>10/100 = 0.1</td>
<td>0.8 – 0.9</td>
</tr>
<tr>
<td>blue (B)</td>
<td>10/100 = 0.1</td>
<td>0.9 – 1.0</td>
</tr>
</tbody>
</table>
• Step 1 – W
 interval: 0.4 – 0.65
• Step 1 – W
 interval : 0.4 – 0.65

• Step 2 – K
 \[0.4 + 0.25 \times 0.4 = 0.5\]
 interval : 0.4 – 0.5
• Step 1 – W
 interval : 0.4 – 0.65

• Step 2 – K
 0.4+0.25*0.4=0.5
 interval : 0.4 – 0.5

• Step 3 – K
 0.4+0.1*0.4=0.44
 interval: 0.4 – 0.44
Arithmetic encoding - 5

- Step 1 – W
 interval : 0.4 – 0.65

- Step 2 – K
 0.4+0.25*0.4=0.5
 interval : 0.4 – 0.5

- Step 3 – K
 0.4+0.1*0.4=0.44
 interval: 0.4 – 0.44

-
Arithmetic decoding - 1

- Final encoding : 0.43137
 (0.43134+0.4314)/2=0.43137
- 0.43137 fits in the interval assigned to W -> W
- Remove the scaling of W
 (0.43137-0.4)/0.25=0.12548 -> K
- Remove the scaling of K
 0.12548/0.4=0.3137 -> K
-
Arithmetic decoding - 2

<table>
<thead>
<tr>
<th>Floating Point Number f, Representing Code</th>
<th>Symbol Whose Probability Interval Surrounds f</th>
<th>Low Value for Symbol’s Probability Interval</th>
<th>High Value for Symbol’s Probability Interval</th>
<th>Size of Symbol’s Probability Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.43137</td>
<td>W</td>
<td>0.4</td>
<td>0.65</td>
<td>0.25</td>
</tr>
<tr>
<td>(\frac{(0.43137 - 0.4)}{(0.65 - 0.4)}) = 0.12548</td>
<td>K</td>
<td>0</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>(\frac{(0.12548 - 0)}{(0.4 - 0)}) = 0.3137</td>
<td>K</td>
<td>0</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>(\frac{(0.3137 - 0)}{(0.4 - 0)}) = 0.78425</td>
<td>Y</td>
<td>0.65</td>
<td>0.8</td>
<td>0.15</td>
</tr>
<tr>
<td>(\frac{(0.78425 - 0.65)}{(0.8 - 0.65)}) = 0.895</td>
<td>R</td>
<td>0.8</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>(\frac{(0.895 - 0.8)}{(0.9 - 0.8)}) = 0.95</td>
<td>B</td>
<td>0.9</td>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Transform Encoding - 1

- Lossy methods are often based upon *transform encoding*
- Most commonly used transforms in digital media
 - Discrete cosine transform (DCT)
 - Discrete Fourier transform (DFT)
- No information is lost in the DCT or DFT. When a transform is used, it becomes possible to discard redundant or irrelevant information in later steps, thus reducing the digital file size. This is the lossy part of the process.
• Discrete cosine transform
Transform Encoding - 3

- Discrete Fourier transform

Original image

log(FFT)