
Final Project

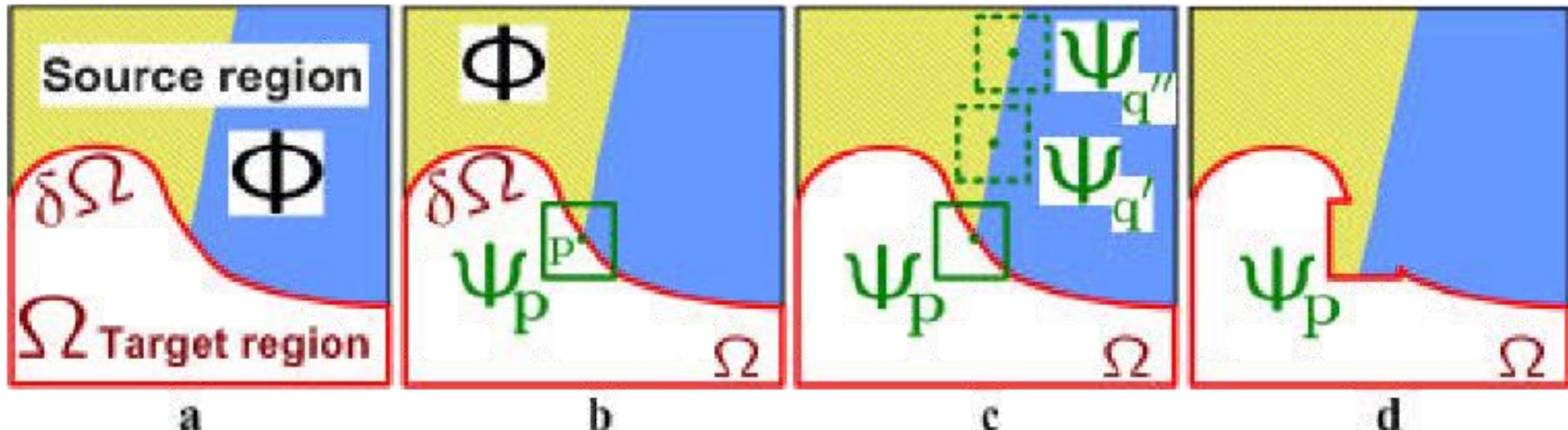
CS3570 introduction to multimedia

1. Image inpainting

- **Inpainting** is the process of reconstructing lost or deteriorated parts of images
- Ref:
 - Image Inpainting [PDF](#)
 - Object Removal by Exemplar-Based Inpainting [PDF](#)

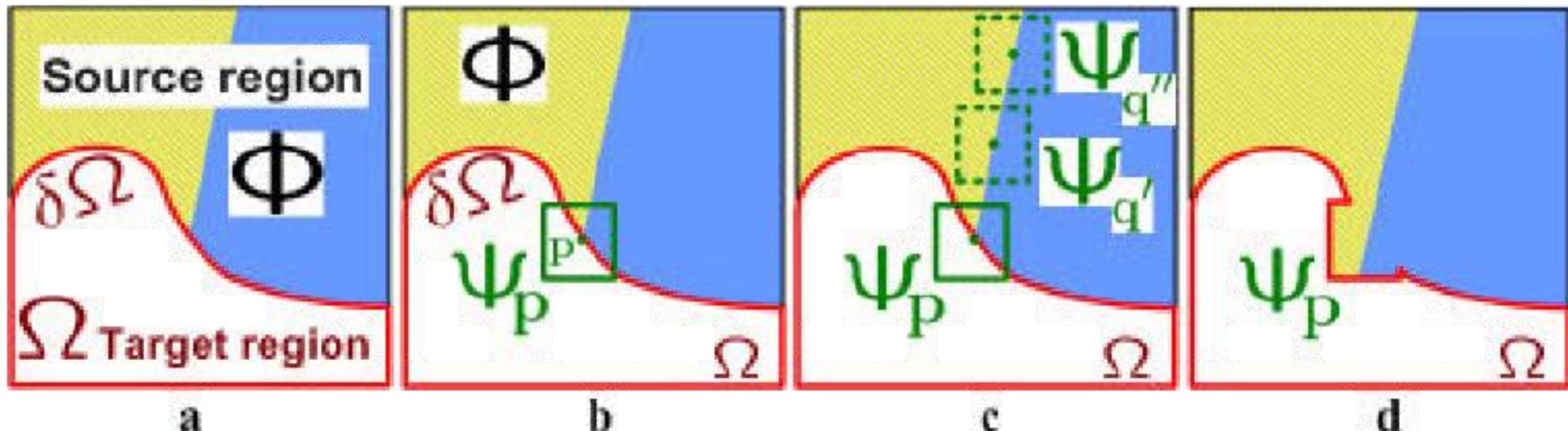
1. Image inpainting

- a) Original image, with the *target region* Ω , its contour $\delta\Omega$ and the *source region* Φ clearly marked.
- b) We want to synthesize the area delimited by the patch Ψ_p centred on the point $p \in \delta\Omega$.



1. Image inpainting

- c) The most likely candidate matches for Ψp lie along the boundary between the two textures in the source region, e.g., Ψq and $\Psi q''$.
- d) The best matching patch in the candidates set has been copied into the position occupied by Ψp , thus achieving partial filling of Ω .

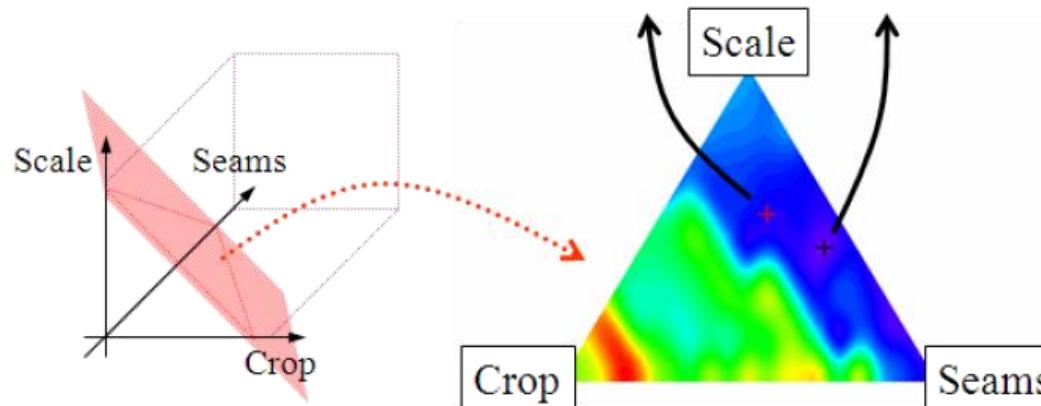


2. Image retargeting

- Resizing images that was aware of the actual photo's contents
- Ref:
 - **Seam Carving for Content-Aware Image Resizing** [PDF](#)
 - **Multi-operator Media Retargeting** [PDF](#) [Code](#)

2. Image retargeting

- Using regular paths we are limited to searching on a plane in resizing space. We find the optimal multi-operator resizing sequence having the minimum BDW distance.



2. Image retargeting

- Some reference about content-aware
 - **Context-Aware Saliency Detection** [PDF](#)
 - **Improved Seam Carving Using a Modified Energy Function Based on Wavelet Decomposition** [PDF](#)

3. Image editing

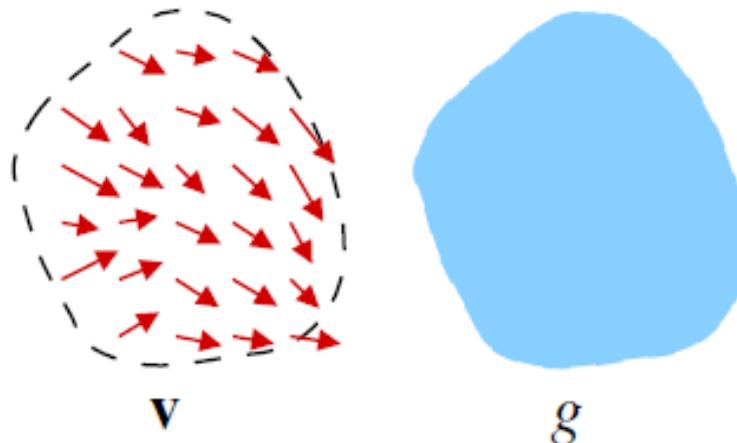
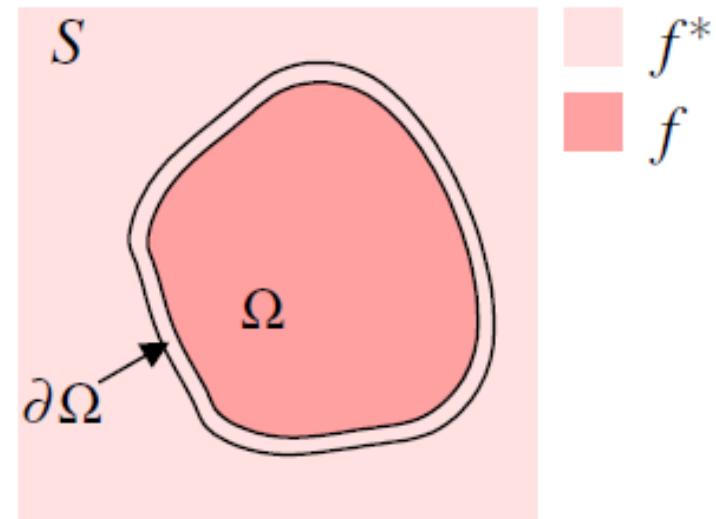
- *Image editing* encompasses the processes of altering images
- Ref:
 - Poisson Image Editing [PDF](#) [Code](#)
 - Fast Poisson Blending using Multi-Splines [PDF](#)

cloning

seamless cloning

3. Image editing

- **Guided interpolation notations.** Unknown function f interpolates in domain W the destination function f^* , under guidance of vector field \mathbf{v} , which might be or not the gradient field of a source function g



4. Non-linear Image Denoising

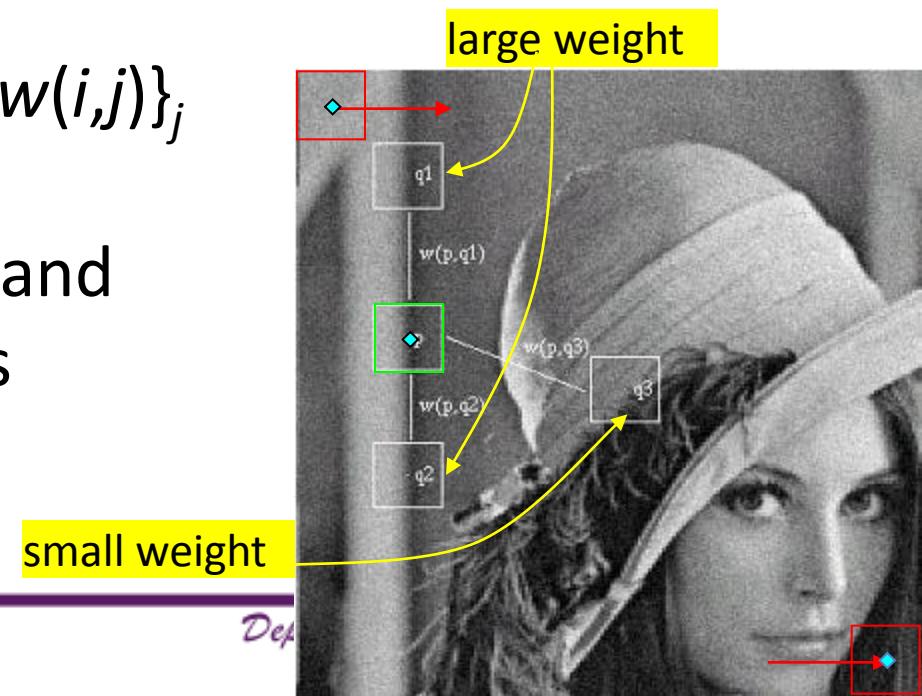
- The goal of image denoising methods is to recover the original image from a noisy image for advanced image analysis
- Ref:
 - A non-local algorithm for image denoising [PDF](#)
 - Bilateral filter for gray and color images [PDF](#)

4. Non-linear Image Denoising – non-local mean

- Given a noisy image $v=\{v(i) | i \in I\}$, the estimated value $NL[v](i)$, for a pixel i , is computed as a weighted average of all the pixels in the image

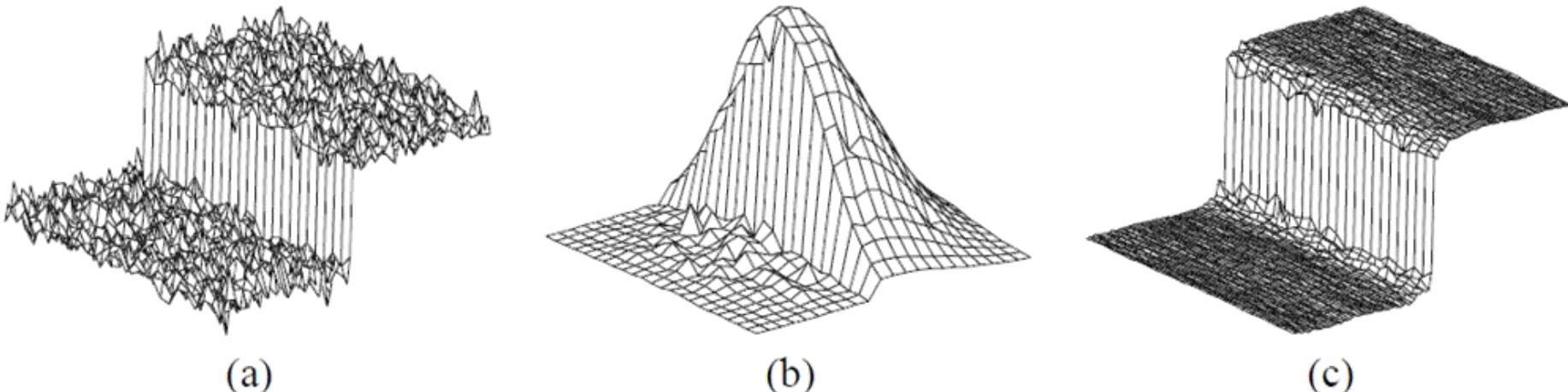
$$NL[v](i) = \sum_{j \in I} \omega(i, j)v(j)$$

- where the family weights $\{w(i, j)\}_j$ depend on the similarity between the pixels i and j , and satisfy the usual conditions $0 \leq w(i, j) \leq 1$ and $\sum_{j \in I} w(i, j) = 1$.



4. Non-linear Image Denoising – Bilateral filter

- a) A 100-gray-level step perturbed by Gaussian noise with $\sigma = 10$ gray levels.
- b) Combined similarity weights $c(\xi; x)s(f(\xi); f(x))$ for a 23x23 neighborhood centered two pixels to the right of the step in (a). The range component effectively suppresses the pixels on the dark side.
- c) The step in (a) after bilateral filtering with $\sigma_r = 50$ gray levels and $\sigma_d = 5$ pixels.



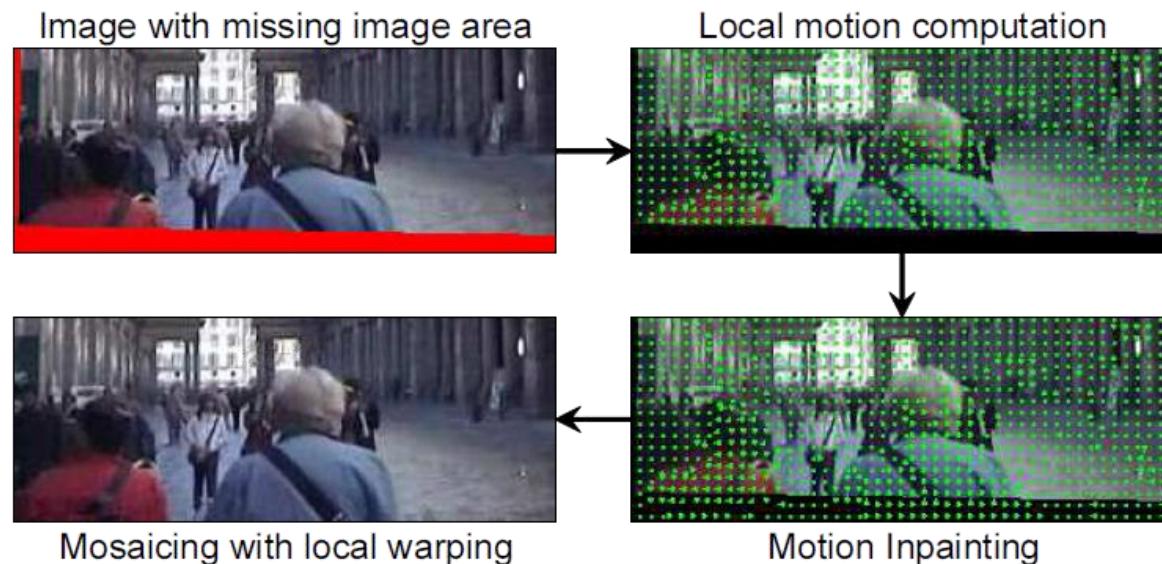
5. Video stabilization

- Videos retrieved from video devices is affected by unwanted camera shakes and jitters, resulting in video quality loss.
- Video stabilization techniques are important to obtain high quality and stable video footages even in non-optimal conditions
- Ref:
 - Full-frame video stabilization [PDF](#)
 - Content-Preserving Warps for 3D Video Stabilization [PDF](#)

5. Video stabilization

1. Video completion with motion inpainting

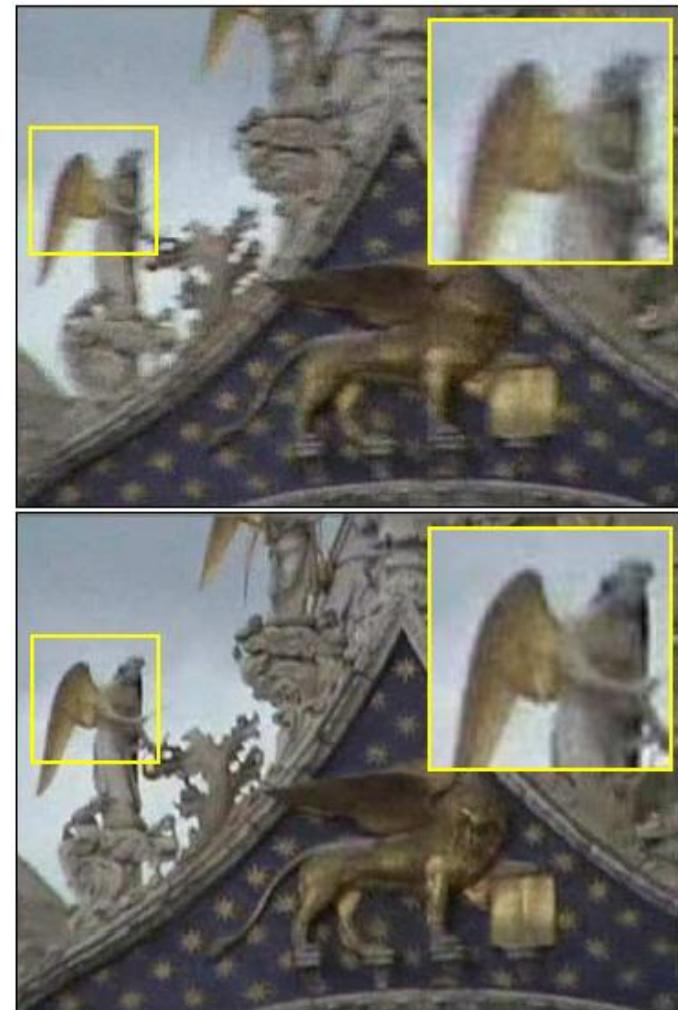
- Local motion is first computed between the current frame and a neighboring frame. Computed local motion is then propagated with motion inpainting method. The propagated motion is finally used to locally adjust mosaics



5. Video stabilization

2. Practical motion deblurring method

- While motion blur in original videos looks natural, it becomes an annoying noise in stabilized videos because it does not match the compensated camera motion.



6. Surveillance video compression

- Video surveillance has been widely used in recent years to enhance public safety and privacy protection
- Surveillance video usually has constant background
- State-of-the-art video compression methods such as H.264/AVC often lead to high computational complexity
- The algorithm taught in class can be used to compress surveillance video and compare with other compression algorithms.
- Ref:
 - Object-based Surveillance Video Compression using Foreground Motion Compensation [PDF](#)

6. Surveillance video compression

1) *Object segmentation*

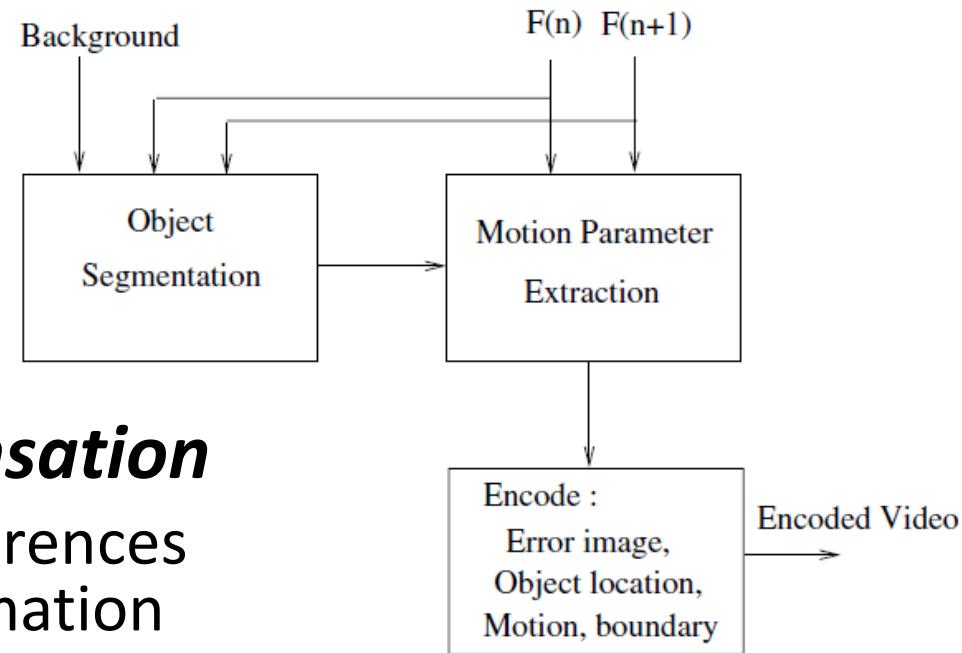
- Better segmentation accuracy reduces the amount of bits required to code the video

2) *Foreground Motion Estimation and Compensation*

- Use sum-of squared differences (SSD) based motion estimation for objects

3) *Object Error Coding*

- Error obtained after motion compensation (Δ) is coded using object based SA-DCT procedure



8. Background subtraction / synthesis

- Moving object detection in video sequences is one of the main tasks in many computer vision applications.
- Background subtraction is a common approach for this task. The idea is to compare the current image against background model which learned by GMM
- C. Stauffer, W.E.L. Grimson, "Adaptive background mixture models for real-time tracking," *CVPR*, Vol. 2, pp. 246-252, June 1999.

Background subtraction

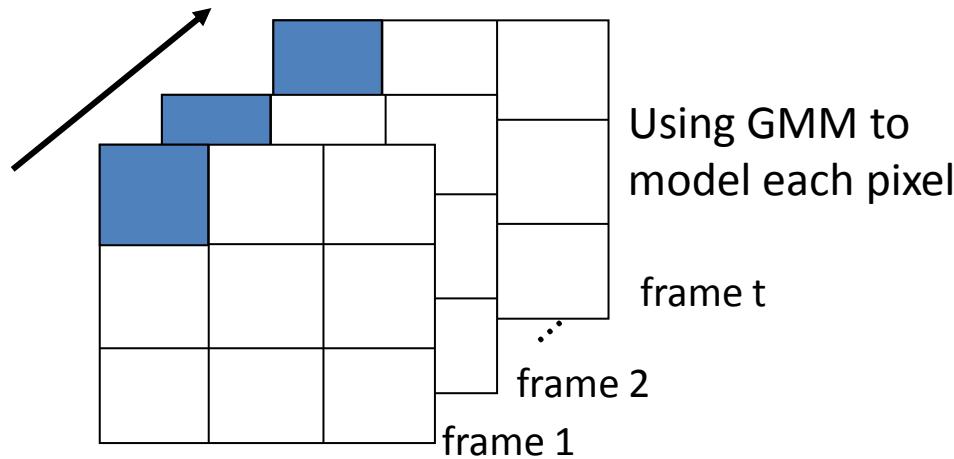
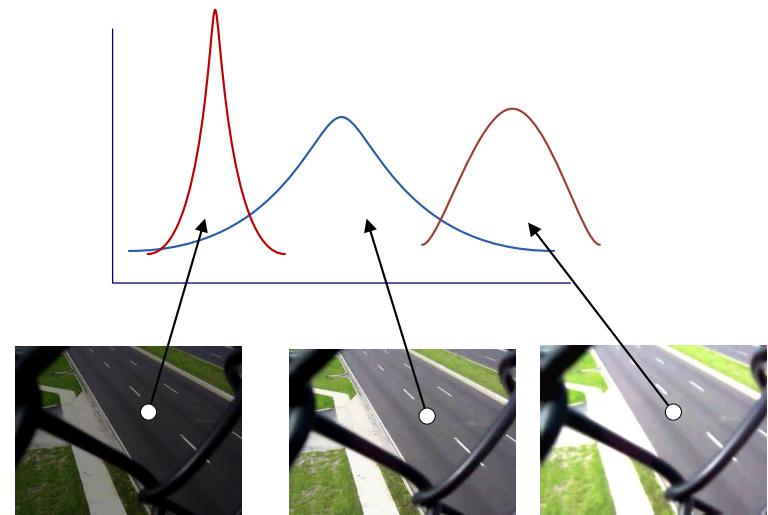
synthesis

8. Background subtraction / synthesis

- Each pixel modeled with a mixture of Gaussians

$$P(.) = \sum_{i=1}^K w_i \eta(., \mu_i, \Sigma_i)$$

$$\eta(X_t, \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(X_t - \mu)^T \Sigma^{-1} (X_t - \mu)}$$



8. Background subtraction / synthesis

- Updating the GMM background model

$$\omega_{k,t} = (1 - \alpha)\omega_{k,t-1} + \alpha M_{k,t}$$

$$\mu_t = (1 - \rho)\mu_{t-1} + \rho X_t$$

$$\sigma_t^2 = (1 - \rho)\sigma_{t-1}^2 + \rho(X_t - \mu_t)^T(X_t - \mu_t)$$

$$\rho = \alpha \eta(X_t | \mu_k, \sigma_k)$$

- First B states are labeled as background states

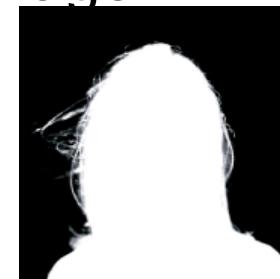
$$B = \underset{b}{\operatorname{argmin}} \left(\sum_{k=1}^b \omega_k > T \right)$$

8. Background subtraction / synthesis

- In Image composition, a new image $I(x,y)$ can be blended from a background image $B(x,y)$ and foreground image $F(x,y)$ with its alpha matte $\alpha(x,y)$ $I = \alpha F + (1-\alpha)B$
- Automatically replace the background region by another background image in the input image



trimap



Alpha matte

result

scribble



Alpha matte

result