Unit 2 — Image Features

 Intensity transformation

 Edge Detection
e Corner Detection
e SIFT

Reading: Szeliski Sec. 3.1,3.2,4.1,4.2.1




Grayscale Transformation
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Contrast Stretching

ab
cd

FIGURE 3.10
Contrast
stretching.
(a) Form of
transformation
function. (b) A
low-contrast
image. (¢) Result
of contrast
stretching.
(d) Result of
L/4 L2 3L/ L-1 thresholding.
(Original image
courtesy of
Dr. Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)

(7S]

Ouput gray level, s
r-.
=

Input gray level.r

CS 6550 2




Algorithm 5.1: Histogram equalization

1.

CS 6550

For an N x M image of GG gray-levels (often 256), create an array H of length G
initialized with 0 values.

. Form the image histogram: Scan every pixel and increment the relevant member

of H—if pixel p has intensity g,, perform

Hlgp| = H[gp] + 1.

. Form the cumulative image histogram H,:

H.[0] = H[0],

H.p|=H.p—-1]+H[p], p=12,....G—-1.

T[p] = round ((;,; 11 Hc[p]) :

(This step obviously lends itself to more efficient implementation by constructing
a look-up table of the multiples of (G — 1)/N M, and making comparisons with
the values in H., which are monotonically increasing.)

. Rescan the image and write an output image with gray-levels g,, setting

9q = Tgp] -



Histogram Equalization Example
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Figure 5.4: Histogram equalization: Original and equalized histograms corresponding to Fig-
«ure 5.3a,b.




Histogram Equalization Example
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Histogram Equalization Example
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It is commonly used for light normalization for image comparison or pattern
recognition under different lighting conditions.

CS 6550



Edge detection

= Convert a 2D image Into a set of curves
— Extracts salient features of the scene

— More compact than pixels
CS 6550 7




~ surface normal discontinuity

. ~ — depth discontinuity

-~ highlights

. surface color/texture

shadow/illumination discontinuity

Figure 5.16: Origin of edges. i.e., physical phenomena in the
image formation process which lead to edges in images.
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Figure 5.17: Detected edge

elements.
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Edge Types

Figure 5.19: Typical edge profiles.
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Image gradient

= The gradient of an image:

V/ =[5 5,]

= The gradient points in the direction of most rapid
change in intensity

= The gradient direction is given by:

— how does this relate to the direction of the edge?
= The edge strength is given by the gradient magnitude

IVl =/ (GD)° + (3L )
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Gradient and edge directions

gradient ¥

white 255( /{ Q

edge direction & Figure 5.18: Gradient direction and
edge direction.
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The iImage as a “surface”
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Linear filtering

For a linear system, each output is a linear combination of all the

f[m,n]= > h[m,nk, gk, ]

input values:

In matrix form:

C = C
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Linear filtering

s [m’nl - f [m,nl
>

In vision, many times, we are interested in operations that are
spatially invariant. For a linear spatially invariant system:

fimn]=1®g=> him—k,n—1gk,1]
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Linear filtering
f[m,n]=1® g=>Y h[m—k,n-1]g[k,I]

Linear system: Input:
g [m]
h [m]
o1 2 " ° B SRR
Output?
fim=0]= Y h[-k]o[k]F o 14" f [m=0]=-2
h [1-k]
: —_— f [m=1]=-4
f [Im=1]=0
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Linear filtering

g [m,n] f[m,n]

>

For a linear spatially invariant system

fimn]=1®g=> h[m—k,n—I]g[k,I]
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Borders

blurred: zero normalized zero

CS 6550 From Rick’s beok




Impulse
flm,n]=1®g=> h[m-kn—Igk,I]
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Shifts
flm,n]=1®g=> h[m-kn-Igk,I]

f[myn]
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Image rotation

h[m,n] g ~ ‘

gim,n]

I¢ is linear, but not a spatially invariant operation. There is not convolution.
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Rectangular filter

h[m,n]

CS 6550 22




Rectangular filter

h[m,n]
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Rectangular filter

h[m,n]

H
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Differentiation and Convolution

= \We could approximate
= Recall this as

= Now thisis linear and ® (whichis obviously a

shift invariant, so must ~ convolution; it’s not a
be the result of a very good way to do

. things, as we shall see)
convolution.
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The discrete gradient

= How can we differentiate a digital image F(x,y)?

— Option 1: reconstruct a continuous image, then
take gradient

— Option 2: take discrete derivative (finite difference)

OF

ooyl = Flo+ 1,y] = Fla, y]

= How would you implement this as a cross-
correlation?

filter demo
26
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The Sobel Operator

= Better approximations of the derivatives exist
— The Sobel operators below are commonly used

1101 1121
[?!-202 gooo
101 1]-2]-1

= The standard defn. of the Sobel operator
omits the 1/8 term

— doesn’t make a difference for edge detection

—the 1/8 term Is needed to get the right gradient
value, however
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Effects of noise

= Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

400 600 800 1000 1200 1400 1600 1800 2000

400 600 800 1000 1200 1400 1600 1800 2000

= Where Is the edge?
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Solution: smooth first

|
800 1000 1200

o

Convolution

Differentiation

1
800 1000 1200

= Where is the edge? Look for peaks in pmGESS
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Derivative theorem of convolution
g-(hx f) = (5;h) x f
= This saves us one operation:

800 1000 1200 1400 1600 1800 2000

800 1000 1200 1400 1600 1800 2000

Convolution

CS 6550

800 1000 1200 1400 1600 1800 2000
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Smoothing and Differentiation

= |[Ssue: noise
— smooth before differentiation
— two convolutions to smooth, then differentiate?

— actually, no - we can use a derivative of
Gaussian filter

= because differentiation is convolution, and
convolution Is associative
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Edge Detection at Different Scales

ey (/. _ ) , ! )

y) WA

c =1 pixel c = 3 pixels o = 7 pixels

The scale of the smoothing filter affects derivative estimates, and also the
semantics of the edges recovered.
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Laplacian of Gaussian
= Look for zero-crossings of

800 1000 1200 1400 1600 1800 2000

800 1000 1200 1400 1600 1800 2000
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1D Example in LoG Result

Figure 5.22: 1D edge profile of the

Zero-crossing.
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Gaussian Functions in 1-D and 2-D

Gaussians are Separable
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Gaussian filtering

fm,n]=1®G =) I[m-k,n-1]G[k,I]
kI

CS 6550




SECOND ORDER EDGE

OPERATOR
MARR-HILDRETH OPERATOR 0 -1 0
|
0 -1 0
D
il el =
[ T T

Combine this with Gaussian smoothing.

Detect edge at ‘Zero-Crossing’ looking for positive and negative
peaks on either side.
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2D edge detection filters.
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Laplacian of Gaussian

CS 6550 38







.
5 ® o ® » N w & @



Non-Maximum Suppression

While there are points with high gradient
that have not been visited

Find a start point that is a local maximum in the
direction perpendicular to the gradient
erasing points that have been checked

while possible, expand a chain through
the current point by:
1) predicting a set of next points, using
the direction perpendicular to the gradient

2) finding which (if any) is a local maximum
in the gradient direction

3) testing if the gradient magnitude at the
maximum is sufficiently large

4) leaving a record that the point and
neighbours have been visited

record the next point, which becomes the current point
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Simple Gradient-Based Edge Detection

form an estimate of the image gradient

obtain the gradient magnitude from this estimate

identify image points where the value
of the gradient magnitude is maximal

in the direction perpendicular to the edge
and also large; these points are edge points
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Predicting the
next edge point

Assume the
marked point is an
edge point. Then
we construct the
tangent to the edge
curve (which is
normal to the
gradient at that
point) and use this
to predict the next
points (here either
I ors).

// \



Algorithm 5.4: Canny edge detector

1. Convolve an image f with a Gaussian of scale o.

2. Estimate local edge normal directions n using equation (5.58) for each pixel in the
image.

3. Find the location of the edges using equation (5.60) (non-maximal suppression).

4. Compute the magnitude of the edge using equation (5.61).

5. Threshold edges in the image with hysteresis (Algorithm 6.5) to eliminate spurious
responses.

6. Repeat steps (1) through (5) for ascending values of the standard deviation o.

7. Aggregate the final information about edges at multiple scale using the ‘feature
synthesis’ approach.
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Figure 5.20: Laplace gradient operator. (a) Laplace edge image using the 8-connectivity mask.
(b) Sharpening using the Laplace operator (equation (5.35), C' = 0.7). Compare the sharpening
effect with the original image in Figure 5.10a.
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Figure 5.21: First-derivative edge detection using Prewitt compass operators. (a) North direction
(the brighter the pixel value, the stronger the edge). (b) East direction. (c) Strong edges from (a).
(d) Strong edges from (b).
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Figure 5.23: Zero-crossings of the second derivative, see Figure 5.10a for the original image.

(a) DoG image (o, = 0.10, 02 = 0.09), dark pixels correspond to negative DoG values, bright
pixels represent positive DoG values. (b) Zero-crossings of the DoG image. (c¢) DoG zero-crossing
edges after removing edges lacking first-derivative support. (d) LoG zero-crossing edges (o = 0.20)
after removing edges lacking first-derivative support—note different scale of edges due to different
Gaussian smoothing parameters.
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Example of Canny Edge Detection

i ‘@.

9 <

P _
pryaiTeca BLILE S iy
(a) (b)

Figure 5.25: Canny edge detection at two different scales.
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Corner (Interest Point) Detection

= Correspondence problem
= Aperture problem

Figure 5.34: Ambiguity of lines for
matching and unambiguity of cor-
ners.

Figure 5.35: Ambiguity of edge de-
tector at the corner tip.
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Moravec Corner Detector

= Moravec detector iIs maximal in pixels with
high contrast. These points are on corners
and sharp edges.
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Zuniga-Haralick(ZH) Corner Detector

= The image function f is approximated in the
neighborhood of the pixel (1,)) by a cubic
polynomial with coefficients c,. This Is a cubic
facet model.

9(1,§) = 1 +eaz + ey +eaz® +eszy +eey? + ez + g’y +cgzy® 40109

= The ZH operator estimates the corner strength
based on the coefficients of the cubic facet model

—2 (5es — Cotsts — Cyta)

(¢ +c3)*

ZH(i, §) =
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Local measures of unigueness

Suppose we only consider a small window of pixels

— What defines whether a feature is a good or bad
candidate?

=

csS 6550 Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute. 52




Corner detection

Local measure of feature uniqueness
— How does the window change when you shift it?
— Shifting the window In any direction causes a big change

e

region: ; ;
no change in all no change along significant change
directions the edge direction in all directions

cS 6550 Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute. 53




Corner detection: the math

Consider shifting the window W by (u,v)
 how do the pixels in W change?

 compare each pixel before and after by
summing up the squared differences (SSD)

 this defines an SSD “error” of E(u,v):

CS 6550 54




Small motion assumption

Taylor Series expansion of I:

Plugging this into the formula on the previous slide...
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Feature detection: the math

Consider shifting the window W by (u,v)
* how do the pixels in W change?

« compare each pixel before and after by
summing up the squared differences

 this defines an “error” of E(u,Vv):

CS 6550



Corner detection: the math

This can be rewritten:

For the example above

* You can move the center of the green window to anywhere on the
blue unit circle

* Which directions will result in the largest and smallest E values?
 We can find these directions by looking at the eigenvectors of H
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Feature detection: the math

This can be rewritten:

Eigenvalues and eigenvectors of H
» Define shifts with the smallest and largest change (E value)
e X, = direction of largest increase in E.
¢ A, =amount of increase in direction x, Hry = )\4—37—!—
« Xx_=direction of smallest increase in E. Hr = \N_r1_

¢ A== amount of increase in direction X,
CS 6550 58




Interest Point Detection

Both A, and A_ are large
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Interest Point Detection

Large A, and small A_
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Interest Point Detection

Small A, and small A
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The Harris operator

A. IS a variant of the “Harris operator” for feature detection

1AD
= —
A1+ Ao

_ determinant(H )
B trace(H)

The trace is the sum of the diagonals, i.e., trace(H) = hy; + h,,
Very similar to A, but less expensive (no square root)

Called the “Harris Corner Detector” or “Harris Operator”

Lots of other detectors, this is one of the most popular

CS 6550 65







Figure 5.36: Illustration of the decision within Harris
corner detector according to eigenvalues of the local
structure matrix. (a), (b) Ridge detected, no corner
at this position. (¢) Corner detected.

The corner detection algorithm we have been de-
scribing is due to Harris (1987). It is necessary to
calculate A at every pixel and mark corners where
the quantity A\ A2 — k(A +)\2)2 exceeds some thresh-
old (k =~ 0.04 makes the detector a little “edge-
phobic”). Note that det A = A A2 and trace A=
A1 + Ag.

Low threshold High threshold




Harris Detector: Mathematics

Measure of corner response:

R =det A—k(trace A)’

detA=A4,
traceA=A4A + 4,

(k — empirical constant, k = 0.04-0.06)
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Harris Detector

A

* R depends only on
eigenvalues of M

* R 1s large for a

* R 1s negative with large
magnitude for an

* |IR| 1s small for a
region

|IR| small
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Harris Corner Detector

Algorithm 5.5: Harris corner detector

1. Filter the image with a Gaussian.

2. Estimate intensity gradient in two perpendicular directions for each pixel, 2l (m y)

8—%,’;—3’). This is performed by twice using a 1D convolution with the kernel

approximating the derivative.
3. For each pixel and a given neighborhood window:
o Calculate the local structure matrix A.
» Evaluate the response function R(A).

4. Choose the best candidates for corners by selecting a threshold on the response
function R(A) and perform non-maximal suppression.
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Harris Detector: Workflow
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Harris Detector: Workflow

CS 6550 - : 74




Example of Harris Corner Detection

Figure 5.37: Example of Harris corners in the image. Courtesy of Martin Urban, Czech Technical
University in Prague, who used such images for 3D reconstruction. A color version of this fiqgure may
be seen in the color inset—Plate 7.
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Feature Invariance

Suppose you rotate the image by some angle
— Will you still pick up the same features?

What if you change the brightness?

Scale?
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Scale Iinvariant detection

Suppose you're looking for corners

Key idea: find scale that gives local maximum of f
— fis a local maximum in both position and scale

— Common definition of f: Laplacian
(or difference between two Gaussian filtered images with different sigmas)
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Scale Invariant Detection

= Solution:

— Design a function on the region (circle), which is
“scale invariant” (the same for corresponding
regions, even if they are at different scales)

Example: average intensity. For corresponding
regions (even of different sizes) i1t will be the same.

— For a point 1n one 1mage, we can consider it as a
function of region size (circle radius)

[T~ =

CS 6550

[

/8




Scale Invariant Detection

= Common approach:

Take a local maximum of this function

Observation: region size (scale), for which the maximum
is achieved, should be Iinvariant to image scale.

Important: this scale invariant region size 1s
found 1n each 1mage !

Max. is called characteristic scale
A

/\ — /\
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Scale Invariant Detection

= A *“good” function for scale detection:

has one stable sharp peak

Cw

“/\/J\

: e

* For usual images: a good function would be the one
with contrast (sharp local intensity change)

CS 6550
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Scale Invariant Detection

= Functions for determining scale

Kernels:

where Gaussian

CS 6550

Note: both kernels are invariant to
scale and rotation
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Build Scale-Space Pyramid

= All scales must be examined to identify scale-invariant
features

= An efficient function is to compute the Difference of

Gaussian (DOG) pyramid (Burt & Adelson, 1983) (or
Laplacian)

CS 6550
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Key point localization

s L L L L LS

= Detect maxima and minima ‘_iﬁ

of difference-of-Gaussian AL

In scale space S A AT
Scale ST I A

£ N
L L L S
L L L

s~ s S S S LS
s L 7 L S IS
VA A iy i
o OO S S
s S L S S LS
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Scale Invariant Detectors

o 1

scale
Find local maximum of: | ‘-
— Harris corner detector Iin o~
Image §pa_ce y -
— Laplacian in scale .
X
2 scale
5 4 1 ¢/ y
Find local maximum of:
— Difference of Gaussians in < =
space and scale y —~
X

I K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

2 %Ig%vggb“Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to [ICV E%204




Automatic scale selection
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Automatic scale selection

Normalize: rescale to fixed size
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Feature descriptors

We know how to detect good points
Next question:
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Feature descriptors

We know how to detect good points
Next question:

Lots of possibilities (this is a popular research area)
— Simple option: match square windows around the point

— State of the art approach: SIFT
= David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/
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Invariance

Suppose we are comparing two images |, and [,
— |, may be a transformed version of |,
— What kinds of transformations are we likely to encounter In
practice?
We'd like to find the same features regardless of the
transformation

— This Is called transformational invariance
— Most feature methods are designed to be invariant to

= Translation, 2D rotation, scale

— They can usually also handle
= Limited 3D rotations (SIFT works up to about 60 degrees)
= Limited affine transformations (some are fully affine invariant)
= Limited illumination/contrast changes
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How to achieve invariance

Need both of the following:

1. Make sure your detector Is invariant
— Harris iIs invariant to translation and rotation
— Scale is trickier

= common approach is to detect features at many scales using a Gaussian
pyramid (e.g., MOPS)

= More sophisticated methods find “the best scale” to represent each feature (e.g.,
SIFT)

2. Design an invariant feature descriptor

— A descriptor captures the information in a region around
the detected feature point

— The simplest descriptor: a square window of pixels
= What's this invariant to?

— Let’s look at some better approaches...
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Rotation invariance for feature descriptors

Find dominant orientation of the image patch

— This Is given by x,, the eigenvector of H corresponding to
Ay

= A, is the larger eigenvalue

— Rotate the patch according to this angle

CS 6550 Figure by Matthéw Brown 91




ultiscale riented atche descriptor

Take 40x40 square window around detected feature
— Scale to 1/5 size (using prefiltering)
— Rotate to horizontal
— Sample 8x8 square window centered at feature

— Intensity normalize the window by subtracting the mean, dividing by the
standard deviation in the window

" ’

Adapted from slide by Matthew Brown 92




Detections at multiple scales

Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The
boxes show the feature orientation and the region from which the descriptor vector is sampled.
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cale nvariant eature ransform

Basic idea:
 Take 16x16 square window around detected feature
 Compute edge orientation (angle of the gradient - 90°) for each pixel
 Throw out weak edges (threshold gradient magnitude)
e Create histogram of surviving edge orientations

0] 2T

angle histogram

Image gradients

CS 6550 Adapted from slide by David Lowe 94




- SIFT descriptor

* Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
 Compute an orientation histogram for each cell
» 16 cells * 8 orientations = 128 dimensional descriptor

Image gradients Keypoint descriptor

CS 6550 Adapted from slide by David Lowe 95




Properties of SIFT

Extraordinarily robust matching technique
— Can handle changes in viewpoint
= Up to about 60 degree out of plane rotation
— Can handle significant changes in illumination
= Sometimes even day vs. night (below)
— Fast and efficient—can run in real time

— Lots of code available
http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known implementations of SIFT
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Lots of applications

Features are used for:
— Image alignment (e.g., mosaics)
— 3D reconstruction
— Motion tracking
— ODbject recognition
— Indexing and database retrieval
— Robot navigation
— ... other
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ODbject recognition

CS 6550 Images from David Lowe 93




Summary

= Things to take away from this unit
— Brightness transformation
— Edge detection by differentiation
— Image gradients
— Laplacian operator

= Laplacian of Gaussian (LoG)

— Canny edge detector (basic idea)

= Effects of varying sigma parameter

— Corner Detection
— SIFT
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