
• Intensity transformation
• Edge Detection
• Corner Detection
• SIFT

Unit 2 – Image  Features 

Reading: Szeliski  Sec. 3.1, 3.2, 4.1, 4.2.1



Grayscale Transformation
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Point processing:  s = T(r)

Contrast stretching Thresholding



Contrast Stretching
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Histogram Equalization Example
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Histogram Equalization Example
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It is commonly used for light normalization for image comparison or pattern 
recognition under different lighting conditions.

Histogram Equalization Example
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Edge detection

Convert a 2D image into a set of curves
– Extracts salient features of the scene
– More compact than pixels
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Edge Types
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Image gradient
The gradient of an image: 

The gradient points in the direction of most rapid 
change in intensity

The gradient direction is given by:

– how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude
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Gradient and edge directions 



The image as a “surface”
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Linear filtering
g [m,n] f [m,n]

f [m,n] = h[m,n,k,l]g[k,l]
k,l
∑

For a linear system, each output is a linear combination of all the 
input values:

F = H G

c = c

In matrix form:
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Linear filtering
g [m,n] f [m,n]

In vision, many times, we are interested in operations that are 
spatially invariant. For a linear spatially invariant system:

f [m,n] = I ⊗ g = h[m − k,n − l]g[k, l]
k,l
∑

=
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Linear filtering
f [m , n ] = I ⊗ g = h[m − k, n − l]g[k , l]

k ,l
∑

g [m]

0 1 2

h [m]

2

-1-1

0 1 2 3

2 2 2 2

1 1 10 0

f [m = 0] = h[−k]g[k]
k

∑

Linear system: Input:

Output?

0 1 2h [-k]

2

-1 -1

f [m=0]=-2

0 1 2
h [1-k]

2

-1 -1

f [m =1] = h[1− k]g[k]
k

∑ f [m=1]=-4

f [m = 2] = h[2 − k]g[k]
k

∑ f [m=2]=0
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Linear filtering
g [m,n] f [m,n]

For a linear spatially invariant system

f [m,n] = I ⊗ g = h[m − k,n − l]g[k, l]
k,l
∑

⊗
‐1 2 ‐1

‐1 2 ‐1

‐1 2 ‐1

g[m,n]
h[m,n] f[m,n]

=

111 115 113 111 112 111 112 111

135 138 137 139 145 146 149 147

163 168 188 196 206 202 206 207

180 184 206 219 202 200 195 193

189 193 214 216 104 79 83 77

191 201 217 220 103 59 60 68

195 205 216 222 113 68 69 83

199 203 223 228 108 68 71 77

m=0  1  2  …
? ? ? ? ? ? ? ?

? -5 9 -9 21 -12 10 ?

? -29 18 24 4 -7 5 ?

? -50 40 142 -88 -34 10 ?

? -41 41 264 -175 -71 0 ?

? -24 37 349 -224 -120 -10 ?

? -23 33 360 -217 -134 -23 ?

? ? ? ? ? ? ? ?
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Borders

From Rick’s book18CS 6550



Impulse

⊗

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

f [m,n] = I ⊗ g = h[m − k,n − l]g[k, l]
k,l
∑

g[m,n]

h[m,n]

f[m,n]

=
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Shifts

⊗

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

g[m,n]

h[m,n]

f[m,n]

=

2pixels

f [m,n] = I ⊗ g = h[m − k,n − l]g[k, l]
k,l
∑
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Image rotation

⊗

g[m,n]

h[m,n]

=?

f[m,n]

It is linear, but not a spatially invariant operation. There is not convolution.
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Rectangular filter

⊗

g[m,n]

h[m,n]

=

f[m,n]
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Rectangular filter

⊗

g[m,n]

h[m,n]

=

f[m,n]
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Rectangular filter

⊗

g[m,n]

h[m,n]

=

f[m,n]
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Differentiation and Convolution

Recall

Now this is linear and 
shift invariant, so must 
be the result of a 
convolution.

We could approximate 
this as

(which is obviously a 
convolution; it’s not a 
very good way to do 
things, as we shall see)

∂f
∂x

= lim
ε→0

f x + ε, y( )
ε

−
f x,y( )

ε
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

∂f
∂x

≈
f xn+1, y( )− f xn , y( )

Δx
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The discrete gradient
How can we differentiate a digital image F(x,y)?
– Option 1:  reconstruct a continuous image, then 

take gradient
– Option 2:  take discrete derivative (finite difference)

How would you implement this as a cross-
correlation?

filter demo
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The Sobel Operator
Better approximations of the derivatives exist
– The Sobel operators below are commonly used

-1 0 1
-2 0 2
-1 0 1

1 2 1
0 0 0
-1 -2 -1

The standard defn. of the Sobel operator 
omits the 1/8 term
– doesn’t make a difference for edge detection
– the 1/8 term is needed to get the right gradient 

value, however
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Effects of noise
Consider a single row or column of the image
– Plotting intensity as a function of position gives a signal

Where is the edge?
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Solution:  smooth first

Where is the edge?  Look for peaks in 
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Derivative theorem of convolution

This saves us one operation:
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Smoothing and Differentiation
Issue:  noise
– smooth before differentiation
– two convolutions to smooth, then differentiate?
– actually, no - we can use a derivative of 

Gaussian filter
because differentiation is convolution, and 
convolution is associative
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The scale of the smoothing filter affects derivative estimates, and also the 
semantics of the edges recovered.

σ =1 pixel σ = 3 pixels σ = 7 pixels

Edge Detection at Different Scales
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Laplacian of Gaussian
Look for zero-crossings of  

Laplacian of Gaussian
operator
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1D Example in LoG Result



CS 6550 35

Gaussian Functions in 1-D and 2-D

)
2

)(exp(
2

1)( 2

2

2 σπσ
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22
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Gaussian filtering

σ=1

σ=2

σ=4∑ −−=⊗=
lk

lkGlnkmIGInmf
,

],[],[],[
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SECOND ORDER EDGE 
OPERATOR

MARR-HILDRETH OPERATOR

∇ = +2
2

2

2

2

∂
∂

∂
∂x y

Combine this with Gaussian smoothing.

0      -1      0

-1      4     -1
0     -1     0

-1     -1     -1

-1      8    -1
-1     -1    -1

Detect edge at ‘Zero-Crossing’ looking  for positive and negative
peaks on either side.
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2D edge detection filters

is the Laplacian operator:

Laplacian of GaussianGaussian derivative of Gaussian
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We wish to mark points along the curve where the magnitude is biggest.
We can do this by looking for a maximum along a slice normal to the curve
(non-maximum suppression).  These points should form a curve.  There are
then two algorithmic issues: at which point is the maximum, and where is the
next one?
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Non-maximum
suppression

At q, we have a 
maximum if the 
value is larger 
than those at 
both p and at r. 
Interpolate to 
get these 
values.
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Non-Maximum Suppression
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Simple Gradient-Based Edge Detection
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Predicting the 
next edge point

Assume the 
marked point is an 
edge point.  Then 
we construct the 
tangent to the edge 
curve (which is 
normal to the 
gradient at that 
point) and use this 
to predict the next 
points (here either 
r or s). 
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Example of Canny Edge Detection
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Corner (Interest Point) Detection

Correspondence problem
Aperture problem
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Moravec Corner Detector
Moravec detector is maximal in pixels with 
high contrast. These points are on corners 
and sharp edges. 

(5.71)
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Zuniga-Haralick(ZH)  Corner Detector
The image function f is approximated in the 
neighborhood of the pixel (i,j) by a cubic 
polynomial with coefficients ck. This is a cubic 
facet model. 

The ZH operator estimates the corner strength 
based on the coefficients of the cubic facet model 

(5.73)



Local measures of uniqueness

Suppose we only consider a small window of pixels
– What defines whether a feature is a good or bad 

candidate?

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute. 52CS 6550



Corner detection

“flat” region:
no change in all 
directions

“edge”:  
no change along 
the edge direction

“corner”:
significant change 
in all directions

Local measure of feature uniqueness
– How does the window change when you shift it?
– Shifting the window in any direction causes a big change

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute. 53CS 6550



Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines an SSD “error” of E(u,v):

Corner detection:  the math

W
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Taylor Series expansion of I:

If the motion (u,v) is small, then first order approx is good

Plugging this into the formula on the previous slide…

Small motion assumption
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Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences
• this defines an “error” of E(u,v):

Feature detection:  the math

W
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Corner detection:  the math
This can be rewritten:

For the example above
• You can move the center of the green window to anywhere on the 

blue unit circle
• Which directions will result in the largest and smallest E values?
• We can find these directions by looking at the eigenvectors of H
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Feature detection:  the math
This can be rewritten:

Eigenvalues and eigenvectors of H
• Define shifts with the smallest and largest change (E value)
• x+ = direction of largest increase in E. 
• λ+ = amount of increase in direction x+

• x- = direction of smallest increase in E. 
• λ- = amount of increase in direction x+

x-

x+

58CS 6550
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Interest Point Detection

Both λ+ and λ- are large
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Interest Point Detection

Large λ+ and small λ-
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Interest Point Detection

Small λ+ and small λ-



Corner detection:  the math
How are λ+, x+, λ-, and x+ relevant for feature detection?

• What’s our feature scoring function?

Want E(u,v) to be large for small shifts in all directions
• the minimum of E(u,v) should be large, over all unit vectors [u v]
• this minimum is given by the smaller eigenvalue (λ-) of H
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Corner detection summary
• Compute the gradient at each point in the image
• Create the H matrix from the entries in the gradient
• Compute the eigenvalues. 
• Find points with large response (λ- > threshold)
• Choose those points where λ- is a local maximum as 

features
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Corner detection summary
Here’s what you do

• Compute the gradient at each point in the image
• Create the H matrix from the entries in the gradient
• Compute the eigenvalues. 
• Find points with large response (λ- > threshold)
• Choose those points where λ- is a local maximum as features
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The Harris operator
λ- is a variant of the “Harris operator” for feature detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Very similar to λ- but less expensive (no square root)
• Called the “Harris Corner Detector” or “Harris Operator”
• Lots of other detectors, this is one of the most popular
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The Harris operator

Harris 
operator

66CS 6550
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Harris Detector: Mathematics

2)(det AA tracekR −=

Measure of corner response:

(k – empirical constant, k = 0.04-0.06)

21

21det
λλ

λλ
+=

=
A

A
trace
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Harris Detector

λ1

λ2 “Corner”

“Edge” 

“Edge” 

“Flat”

• R depends only on 
eigenvalues of M

• R is large for a corner

• R is negative with large 
magnitude for an edge

• |R| is small for a flat
region

R > 0

R < 0

R < 0|R| small
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Harris Corner Detector
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Harris Detector: Workflow
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Harris Detector: Workflow
Find points with large corner response: R>threshold
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Harris Detector: Workflow
Take only the points of local maxima of R
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Harris Detector: Workflow
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Example of Harris Corner Detection



Feature Invariance

Suppose you rotate the image by some angle
– Will you still pick up the same features?

What if you change the brightness?

Scale?
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Scale invariant detection
Suppose you’re looking for corners

Key idea:  find scale that gives local maximum of f
– f is a local maximum in both position and scale
– Common definition of f:  Laplacian

(or difference between two Gaussian filtered images with different sigmas)
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Scale Invariant Detection
Solution:
– Design a function on the region (circle), which is 

“scale invariant” (the same for corresponding 
regions, even if they are at different scales)

Example: average intensity. For corresponding 
regions (even of different sizes) it will be the same. 

scale = 1/2

– For a point in one image, we can consider it as a 
function of region size (circle radius) 

f

region size

Image 1 f

region size

Image 2
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Scale Invariant Detection
Common approach:

scale = 1/2

f

region size/scale

Image 1 f

region size/scale

Image 2

Take a local maximum of this function

Observation: region size (scale), for which the maximum 
is achieved, should be invariant to image scale.

s1 s2

Important: this scale invariant region size is 
found in each image independently!

Max. is called characteristic scale
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Scale Invariant Detection
A “good” function for scale detection:

has one stable sharp peak

f

region size

bad

f

region size

bad

f

region size

Good !

• For usual images: a good function would be the one 
with contrast (sharp local intensity change)
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Scale Invariant Detection
Functions for determining scale

2 2

21 2
2

( , , )
x y

G x y e σ
πσ

σ
+

−
=

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

Kernel Imagef = ∗
Kernels:

where Gaussian

Note: both kernels are invariant to 
scale and rotation

(Laplacian)

(Difference of Gaussians)

81CS 6550



Build Scale-Space Pyramid
All scales must be examined to identify scale-invariant 
features
An efficient function is to compute the Difference of 
Gaussian (DOG) pyramid (Burt & Adelson, 1983) (or 
Laplacian)

Blur 

Re sampl e

Su btract

Blur 

Re sampl e

Su btract

Blur 

Resample

Subtract
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Key point localization

Detect maxima and minima 
of difference-of-Gaussian 
in scale space Blur 

Re sampl e

Su btract
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Scale Invariant Detectors
Harris-Laplacian1

Find local maximum of:
– Harris corner detector in 

image space
– Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004

scale

x

y

← Harris →

←
La

pl
ac

ia
n 

→

• SIFT (Lowe)2

Find local maximum of:
– Difference of Gaussians in 

space and scale

scale

x

y

← DoG →

←
D

oG
 →
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Feature descriptors
We know how to detect good points
Next question: How to match them?

?
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Feature descriptors
We know how to detect good points
Next question: How to match them?

Lots of possibilities (this is a popular research area)
– Simple option:  match square windows around the point
– State of the art approach:  SIFT

David Lowe, UBC  http://www.cs.ubc.ca/~lowe/keypoints/

?
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Invariance
Suppose we are comparing two images I1 and I2

– I2 may be a transformed version of I1
– What kinds of transformations are we likely to encounter in 

practice?
We’d like to find the same features regardless of the 

transformation
– This is called transformational invariance
– Most feature methods are designed to be invariant to 

Translation, 2D rotation, scale

– They can usually also handle
Limited 3D rotations (SIFT works up to about 60 degrees)
Limited affine transformations (some are fully affine invariant)
Limited illumination/contrast changes
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How to achieve invariance
Need both of the following:
1. Make sure your detector is invariant

– Harris is invariant to translation and rotation
– Scale is trickier

common approach is to detect features at many scales using a Gaussian 
pyramid (e.g., MOPS)
More sophisticated methods find “the best scale” to represent each feature (e.g., 
SIFT)

2.  Design an invariant feature descriptor
– A descriptor captures the information in a region around 

the detected feature point
– The simplest descriptor:  a square window of pixels 

What’s this invariant to?

– Let’s look at some better approaches…
90CS 6550



Find dominant orientation of the image patch
– This is given by x+, the eigenvector of H corresponding to 

λ+
λ+ is the larger eigenvalue

– Rotate the patch according to this angle

Rotation invariance for feature descriptors

Figure by Matthew Brown 91CS 6550



Take 40x40 square window around detected feature
– Scale to 1/5 size (using prefiltering)
– Rotate to horizontal
– Sample 8x8 square window centered at feature
– Intensity normalize the window by subtracting the mean, dividing by the 

standard deviation in the window

CS 6550

Multiscale Oriented PatcheS descriptor

8 pixels

Adapted from slide by Matthew Brown 92



Detections at multiple scales
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Basic idea:
• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90°) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2π

angle histogram
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SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe 95CS 6550



Properties of SIFT
Extraordinarily robust matching technique

– Can handle changes in viewpoint
Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination
Sometimes even day vs. night (below)

– Fast and efficient—can run in real time
– Lots of code available

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT
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Lots of applications

Features are used for:
– Image alignment (e.g., mosaics)
– 3D reconstruction
– Motion tracking
– Object recognition
– Indexing and database retrieval
– Robot navigation
– … other
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Object recognition

Images from David Lowe 98CS 6550
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Summary
Things to take away from this unit
– Brightness transformation

– Edge detection by differentiation

– Image gradients

– Laplacian operator
Laplacian of Gaussian (LoG)

– Canny edge detector (basic idea)
Effects of varying sigma parameter

– Corner Detection

– SIFT


