
CS 6550 

Unit 7 
Image Alignment and Stitching 

 

 

Reading:  Szeliski’s book 
     Sec. 6.1  
     Chapter 9: Image Stitching  



CS 6550 

Image Alignment and Stitching 

• Homographies 

• Rotational Panoramas 

• RANSAC 

• Global alignment 

• Warping 

• Blending 

 

 



Motivation: Recognition  

Figures from David Lowe 
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Motivation: medical image 

registration 

4 



Motivation: Mosaics 

• Getting the whole picture 
– Consumer camera: 50˚ x 35˚ 

 

Slide from Brown & Lowe 2003 
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Motivation: Mosaics 

• Getting the whole picture 
– Consumer camera: 50˚ x 35˚ 

– Human Vision: 176˚ x 135˚ 

 

Slide from Brown & Lowe 2003 
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Motivation: Mosaics 

• Getting the whole picture 
– Consumer camera: 50˚ x 35˚ 

– Human Vision: 176˚ x 135˚ 

 

 

 

 

 

 

 

 

 

• Panoramic Mosaic        = up to 360 x 180° 

 Slide from Brown & Lowe 2003 
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Motion models 

• What happens when we take two images with 
a camera and try to align them? 

• translation? 

• rotation? 

• scale? 

• affine? 

• perspective? 

• … see interactive demo (VideoMosaic) 

Szeliski 



Fitting an affine transformation 

Figures from David Lowe, ICCV 1999 

Affine  model approximates perspective projection of 

planar objects. 
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Fitting an affine transformation 

• Assuming we know the correspondences, how do we 

get the transformation? 
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Fitting an affine transformation 

• Assuming we know the correspondences, how do we 

get the transformation? 
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Fitting an affine transformation 

• How many matches (correspondence pairs) do we 

need to solve for the transformation parameters? 

• Once we have solved for the parameters, how do we 

compute the coordinates of the corresponding point 

for                      ?  
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Panoramas 

Obtain a wider angle view by combining multiple images. 
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How to stitch together a 

panorama? 
• Basic Procedure 

– Take a sequence of images from the same position 

• Rotate the camera about its optical center 

– Compute transformation between second image and 

first 

– Transform the second image to overlap with the first 

– Blend the two together to create a mosaic 

– (If there are more images, repeat) 

 

• …but wait, why should this work at all? 

– What about the 3D geometry of the scene? 

– Why aren’t we using it? 
Source: Steve Seitz 
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Panoramas: generating synthetic views 

real 

camera 
synthetic 

camera 

Can generate any synthetic camera view 

as long as it has the same center of projection! 
Source: Alyosha Efros 
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mosaic PP 

Image reprojection 

The mosaic has a natural interpretation in 3D 
• The images are reprojected onto a common plane 

• The mosaic is formed on this plane 

• Mosaic is a synthetic wide-angle camera 
Source: Steve Seitz 17 



Homography 

How to relate two images from the same camera center? 
– how to map a pixel from PP1 to PP2? 

Think of it as a 2D image warp from one image to another. 

A projective transform is a mapping between any two PPs 

with the same center of projection 

• rectangle should map to arbitrary quadrilateral  

• parallel lines aren’t 

• but must preserve straight lines 

called Homography 
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Homography 
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Recap: How to stitch together a 

panorama? 
• Basic Procedure 

– Take a sequence of images from the same position 

• Rotate the camera about its optical center 

– Compute transformation between second image and 

first 

– Transform the second image to overlap with the first 

– Blend the two together to create a mosaic 

– (If there are more images, repeat) 

Source: Steve Seitz 20 



Analysing patterns and shapes 

Automatically  

rectified floor 

The floor (enlarged) 

What is the shape of the b/w floor pattern? 

Slide from Criminisi 
21 



From Martin Kemp The Science of Art 

        (manual reconstruction) 
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Analysing patterns and shapes 

Slide from Criminisi 
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Automatically rectified floor 

St. Lucy Altarpiece, D. Veneziano 

Analysing patterns and shapes 

What is the (complicated) 

shape of the floor pattern? 

Slide from Criminisi 
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changing camera center 

Does it still work? synthetic PP 

PP1 

PP2 

Source: Alyosha Efros 
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Planar scene (or far away) 

PP3 is a projection plane of both centers of projection, 

so we are OK! 

This is how big aerial photographs are made 

PP1 

PP3 

PP2 

Source: Alyosha Efros 
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Outliers 

• Outliers can hurt the quality of our parameter 

estimates, e.g.,  

– an erroneous pair of matching points from two images 

– an edge point that is noise, or doesn’t belong to the 

line we are fitting. 

 

 

 

 

 

Grauman 
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Example: least squares line fitting 

• Assuming all the points that belong to a particular line are 

known 

 

Grauman 

28 



Outliers affect least squares fit 

29 



Outliers affect least squares fit 

30 



RANSAC 

• RANdom Sample Consensus 

 

• Approach: we want to avoid the impact of 

outliers, so let’s look for “inliers”, and use those 

only. 

 

• Intuition: if an outlier is chosen to compute the 

current fit, then the resulting line won’t have 

much support from rest of the points. 
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RANSAC 

• RANSAC loop: 

1. Randomly select a seed group of points on which to 

base transformation estimate (e.g., a group of matches) 

2. Compute transformation from seed group 

3. Find inliers to this transformation  

4. If the number of inliers is sufficiently large, re-compute 

least-squares estimate of transformation on all of the 

inliers 

 

• Keep the transformation with the largest number of 

inliers 

32 



RANSAC Line Fitting Example 

Task: 

Estimate best line 

Slide credit: Jinxiang Chai, CMU 
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RANSAC Line Fitting Example 

Sample two points 

34 



RANSAC Line Fitting Example 

Fit Line 

35 



RANSAC Line Fitting Example 

Total number of 

points within a 

threshold of line. 36 



RANSAC Line Fitting Example 

Repeat, until get a 

good result 
37 



RANSAC Line Fitting Example 

Repeat, until get a 

good result 
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RANSAC Line Fitting Example 

Repeat, until get a 

good result 
39 



RANSAC example: Translation 

Putative matches 

Source: Rick Szeliski 
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RANSAC example: Translation 

Select one match, count inliers 
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RANSAC example: Translation 

Select one match, count inliers 
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RANSAC example: Translation 

Find “average” translation vector 
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Feature-based alignment outline 

Source: L. Lazebnik 
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Feature-based alignment outline 

• Extract features 

Source: L. Lazebnik 
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Feature-based alignment outline 

• Extract features 

• Compute putative matches 

Source: L. Lazebnik 
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Feature-based alignment outline 

• Extract features 

• Compute putative matches 

• Loop: 

• Hypothesize transformation T (small group of putative 

matches that are related by T) 

 

Source: L. Lazebnik 
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Feature-based alignment outline 

• Extract features 

• Compute putative matches 

• Loop: 

• Hypothesize transformation T (small group of putative 

matches that are related by T) 

• Verify transformation (search for other matches consistent 

with T) 

Source: L. Lazebnik 
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Feature-based alignment outline 

• Extract features 

• Compute putative matches 

• Loop: 

• Hypothesize transformation T (small group of putative 

matches that are related by T) 

• Verify transformation (search for other matches consistent 

with T) 

Source: L. Lazebnik 
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Towards large-scale mosaics… 
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Motion models 

Translation 

2 unknowns 

Affine 

6 unknowns 

Perspective 

8 unknowns 

3D rotation 

3 unknowns 

Szeliski 
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Plane perspective mosaics 

– 8-parameter homographies 

– Limitations: 

• local minima  

• slow convergence 

• difficult to control interactively 

Szeliski 
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Rotational mosaics 

– Directly optimize rotation and focal length 

– Advantages: 

• ability to build full-view  
panoramas 

• easier to control interactively 

• more stable and accurate  
estimates 

Szeliski 
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3D → 2D Perspective Projection 

 
 

u 

(Xc,Yc,Zc) 

uc f 

Szeliski 
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Rotational mosaic 

• Projection equations 

1. Project from image to 3D ray 

•  (x0,y0,z0)  = (u0-uc,v0-vc,f) 

2. Rotate the ray by camera motion 

•  (x1,y1,z1)  = R01 (x0,y0,z0) 

3. Project back into new (source) image 

•  (u1,v1) = (fx1/z1+uc,fy1/z1+vc) 

 

Szeliski 
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Establishing correspondences 

1. ‘Direct’ method: 

– Use generalization of affine motion model 
[Szeliski & Shum ’97] 

2. Feature-based method 

– Extract features, match, find consistent inliers 
[Lowe ICCV’99; Schmid ICCV’98, 
Brown&Lowe ICCV’2003] 

– Compute R from correspondences 
(absolute orientation) 

Szeliski 
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Absolute orientation 

[Arun et al., PAMI 1987] [Horn et al., JOSA A 1988] 
Procrustes Algorithm [Golub & VanLoan] 

 

Given two sets of matching points, compute R 

•  pi’ = R pi  3D rays 

•  A = Σi pi pi’
T = Σi pi pi

T RT = U S VT = (U S UT) RT 

•  VT = UT RT 

•  R = V UT
 

Szeliski 
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Stitching demo 

Szeliski 
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Panoramas 

• What if you want a 360 field of view? 

mosaic Projection Cylinder 

Szeliski 
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Cylindrical panoramas 

• Steps 
– Reproject each image onto a cylinder 
– Blend  
– Output the resulting mosaic 

Szeliski 

mcmillan.mpeg


CS 6550 
f = 180 (pixels) 

Cylindrical Panoramas 

• Map image to cylindrical or spherical 
coordinates 

– need known focal length 

 

 

 

 

Image 384x300 f = 380 f = 280 
Szeliski 
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– Map 3D point (X,Y,Z) onto cylinder 

Cylindrical projection 

X 

Y 

Z 

unit cylinder 

unwrapped cylinder 

• Convert to cylindrical coordinates 

cylindrical image 

• Convert to cylindrical image coordinates 

– s defines size of the final image 

Szeliski 
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Cylindrical warping 

•Given focal length f and image 
center (xc,yc) 

X 

Y 

Z 

(X,Y,Z) 

(sinq,h,cosq) 

Szeliski 
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Spherical warping 

•Given focal length f and image 
center (xc,yc) 

X 

Y 

Z 

(x,y,z) 

(sinθcosφ,cosθcosφ,sinφ) 

cos φ 

φ 

cos θ cos 

φ 

sin φ 

Szeliski 
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3D rotation 

•Rotate image before placing 
on unrolled sphere 

(x,y,z) 

(sinθcosφ,cosθcosφ,sinφ) 

cos φ 

φ 

cos θ cos 

φ 

sin φ 

_    _ 

_    _ 

p = R p 

Szeliski 
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Radial distortion 

• Correct for “bending” in wide field of view lenses 

 

Szeliski 
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Fisheye lens 

• Extreme “bending” in ultra-wide fields of view 

 

Szeliski 
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Image Stitching 

1. Align the images over each other 

– camera pan ↔ translation on cylinder 

2. Blend the images together 

Szeliski 
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Assembling the panorama 

• Stitch pairs together, blend, then crop 

Szeliski 
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Problem:  Drift 

• Error accumulation 
– small (vertical) errors accumulate over time 

– apply correction so that sum = 0 (for 360° pan.) 

Szeliski 
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Problem:  Drift 

• Solution 
– add another copy of first image at the end 

– this gives a constraint:  yn = y1 

– there are a bunch of ways to solve this problem 
• add displacement of (y1 – yn)/(n -1) to each image after the 

first 

• compute a global warp:  y’ = y + ax 

• run a big optimization problem, incorporating this constraint 
– best solution, but more complicated 

– known as “bundle adjustment”  

(x1,y1) 

copy of first 

image 

(xn,yn) 

Szeliski 
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Full-view (360° spherical) 
panoramas 

Szeliski 
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Full-view Panorama 

+ 

+ 

+ 

+ 

Szeliski 
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Global alignment 

• Register all pairwise overlapping images 

• Use a 3D rotation model (one R per image) 

• Use direct alignment (patch centers) or 
feature based 

• Infer overlaps based on previous matches 
(incremental) 

• Optionally discover which images overlap 
other images using feature selection (RANSAC) 

Szeliski 
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Bundle adjustment formulations 
  

 

 

All pairs optimization: 

 

 

Full bundle adjustment, using 3-D point positions  

 

 

Bundle adjustment using 3-D ray: 

 

 

All-pairs 3-D ray formulation: 

Projected point 3-D ray from point 

Map 2D point i in image j to 2D point in image k 

Map 3D point i in to 2D point  in image i 

3-D ray from point i 

3-D ray from points i and j  

Confidence / uncertainty of point i in image j 
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Summary 

• Image alignment is very essential in many 
computer vision applications 

• Selection of appropriate image transformations 
is very important and usually depends on the 
application domains. 

• Image mosaicing/stitching is very common in 
many applications, such as panoramas, medical 
imaging, etc. 

 

 


