Unit 7
Image Alighment and Stitching

Reading: Szeliski’s book
Sec. 6.1
Chapter 9: Image Stitching
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Image Alignment and Stitching

* Homographies
e Rotational Panoramas

 RANSAC
* Global alignment

* Warping
* Blending
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Motivation: Recognition

3
Figures from David Lowe



Motivation: medical image
registration




Motivation: Mosaics

» Getting the whole picture
— Consumer camera: 50 x 35

5
Slide from Brown & Lowe 2003



Motivation: Mosaics

» Getting the whole picture

— Consumer camera: 50 x 35
— Human Vision: 176 x 135
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Slide from Brown & Lowe 2003



Motivation: Mosaics

» Getting the whole picture

— Consumer camera: 50 x 35
— Human Vision: 176 x 135

« Panoramic Mosaic = up to 360 x 180°

Slide from Brown & Lowe 2003



Motion models

 What happens when we take two images with
a camera and try to align them?

e translation?
e rotation?

e scale?

e affine?

e perspective?
e ... see interactive demo (VideoMosaic)
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Fitting an affine transformation
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Affine model approximates perspective projection of
planar objects.

Figures from David Lowe, ICCV 1999



Fitting an affine transformation

« Assuming we know the correspondences, how do we
get the transformation?

(%, Y1) o

S MEN

11



Fitting an affine transformation

« Assuming we know the correspondences, how do we
get the transformation?
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Fitting an affine transformation

Xi Y,

« How many matches (correspondence pairs) do we
need to solve for the transformation parameters?
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* Once we have solved for the parameters, how do we

compute the coordinates of the corresponding point
for (XneW’ yI’IEW) ?
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Panoramas

Z119S 'S woJj) abew

Obtain a wider angle view by combining multiple images.

14
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How to stitch together a

panorama?

 Basic Procedure

— Take a sequence of images from the same position
« Rotate the camera about its optical center

— Compute transformation between second image and
first

— Transform the second image to overlap with the first
— Blend the two together to create a mosaic
— (If there are more images, repeat)

« ...but wait, why should this work at all?
— What about the 3D geometry of the scene?
— Why aren’t we using it? 15

Source: Steve Seitz



Panoramas: generating synthetic views

real synthetic
camera camera

Can generate any synthetic camera view
as long as it has the same center of projection!

Source: Alyosha Efros



Image reprojection

N mosaic PP

The mosaic has a natural interpretation in 3D
« The images are reprojected onto a common plane
« The mosaic is formed on this plane
« Mosaic is a synthetic wide-angle camera

Source: Stev]e7Seitz



Homography

How to relate two images from the same camera center?
— how to map a pixel from PP1 to PP2?

Think of it as a 2D image warp from one image to another.

A projective transform is a mapping between any two PPs
with the same center of projection
 rectangle should map to arbitrary quadrilateral

« parallel lines aren’t
« but must preserve straight lines PP2

called Homography
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Source: Alyosha Efros



Homography

To apply a given homography H WX x k x|y
« Compute p’ = Hp (regular matrix multiply) Wy' —|* * * y

« Convert p’ from homogeneous to image * * * 1
coordinates A i o™

P



Recap: How to stitch together a

panorama?

 Basic Procedure

— Take a sequence of images from the same position
« Rotate the camera about its optical center

— Compute transformation between second image and
first

— Transform the second image to overlap with the first
— Blend the two together to create a mosaic
— (If there are more images, repeat)

Source: Steve Seitz



Analysing patterns and shapes

The floor (enlarged)

AutomaticaIIA/
Slide from Criminisi rectified floor



Analysmg patterns and shapes

Automatic rectification

From Martin Kemp The Science of Art
(manual reconstruction)

Slide from Crimi\h\l 22



Analysing patterns and shapes

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Slide from Criminisi 23



changing camera center

Does it still work? synthetic PP
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Source: AIyosha2 %fros



Planar scene (or far away)
N PP3

PP3 is a projection plane of both centers of projection,
so we are OK!

This is how big aerial photographs are made

25
Source: Alyosha Efros
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Outliers

« Qutliers can hurt the quality of our parameter
estimates, e.g.,
— an erroneous pair of matching points from two images

— an edge point that is noise, or doesn’t belong to the
line we are fitting.

27
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Example: least squares line fitting

« Assuming all the points that belong to a particular line are
known
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Outliers affect least squares fit
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Outliers affect least squares fit
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RANSAC

« RANdom Sample Consensus

* Approach: we want to avoid the impact of
outliers, so let’s look for “inliers”, and use those
only.

* Intuition: if an outlier iIs chosen to compute the
current fit, then the resulting line won’t have
much support from rest of the points.
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RANSAC

RANSAC loop:

Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of matches)

Compute transformation from seed group
Find inliers to this transformation

If the number of inliers is sufficiently large, re-compute
least-squares estimate of transformation on all of the
inliers

Keep the transformation with the largest number of
Inliers

32



RANSAC Line Fitting Example

o
o
o
° o
o
o ¢ ®
$
o
° ° Task:
¢ Estimate best line

Slide credit: Jinxiang Chai, CMU
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RANSAC Line Fitting Example

o o Sample two points
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RANSAC Line Fitting Example

o o Fit Line
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RANSAC Line Fitting Example

Total number of
points within a
threshold of line.
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RANSAC Line Fitting Example

o o Repeat, until get a
o good result
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RANSAC Line Fitting Example

Repeat, until get a
good result
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RANSAC Line Fitting Example

Repeat, until get a
) good result

39



RANSAC example: Translation

Putative matches

Source: Rick Szeliski

40



RANSAC example: Translation

Select one match, count inliers
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RANSAC example: Translation

Select one match, count inliers
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RANSAC example: Translation

Find “average” translation vector
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Feature-based alignment outline

44
Source: L. Lazebnik



Feature-based alignment outline

Extract features

45
L. Lazebnik

Source



Feature-based alignment outline

« Extract features
« Compute putative matches

46
Source: L. Lazebnik



Feature-based alignment outline

« Extract features
« Compute putative matches
 Loop:

* Hypothesize transformation T (small group of putative
matches that are related by T)

47
Source: L. Lazebnik



Feature-based alignment outline

« Extract features
« Compute putative matches
 Loop:

Hypothesize transformation T (small group of putative
matches that are related by T)

Verify transformation (search for other matches consistent

with T)
48

Source: L. Lazebnik



Feature-based alignment outline

« Extract features
« Compute putative matches

 Loop:
* Hypothesize transformation T (small group of putative
matches that are related by T)
« Verify transformation (search for other matches consistent
with T) .

Source: L. Lazebnik



Towards large-scale mosaics...
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Motion models
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Translation Affine Perspective 3D rotation
2 unknowns 6 unknowns 8 unknowns 3 unknowns
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Plane perspective mosaics

— 8-parameter homographies

— Limitations:
* |local minima
e slow convergence
* difficult to control interactively

CS 6550



Rotational mosaics

— Directly optimize rotation and focal length

— Advantages:
* ability to build full-view
panoramas
* easier to control interactively

e more stable and accurate
estimates

CS 6550 Szeliski



3D - 2D Perspective Projection

e
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Rotational mosaic

* Projection equations

1. Project from image to 3D ray

‘ (X0:Y0:Zo) = (Ug=Uc,Vo-Ve,f)

2. Rotate the ray by camera motion

‘ (X1:¥1,21) = Roy (X0:Y0:20)

3. Project back into new (source) image
* (UpVy) = (IXy/2,+Uc Ty, /20 4V )

CS 6550



Establishing correspondences

1. ‘Direct’ method:

— Use generalization of affine motion model
[Szeliski & Shum '97]

2. Feature-based method

— Extract features, match, find consistent inliers
[Lowe ICCV’99; Schmid ICCV’9S,
Brown&Lowe ICCV’2003]

— Compute R from correspondences
(absolute orientation)

CS 6550



Absolute orientation

[Arun et al., PAMI 1987] [Horn et al., JOSA A 1988]
Procrustes Algorithm [Golub & VanLoan]

Given two sets of matching points, compute R

. pi’=Rp 3D rays

’ A=Zipip T =Zipp' RT=USVI=(USU)R'
. VI=UTRT

. R=VUT

CS 6550



Stitching demo

CS 65350 Szeliski



Panoramas

 What if you want a 360° field of view?

\ mosaic Projection Cylinder

CS 6550



Cylindrical panoramas

* Steps
— Reproject each image onto a cylinder
— Blend
— Output the resulting mosaic

CS 6550 Szeliski


mcmillan.mpeg

Cylindrical Panoramas

 Map image to cylindrical or spherical
coordinates

— need known focal length

ppage 384x300  f= 180 (pixels) f =280 f =380

CS 65

Szeliski



Cylindrical projection

/ (X,Y,7) — Map 3D point (X,Y,Z) onto cylinder

@Ry 09,2) = (XY 2
N— / I « Convert to cylindrical coordinates

A/;L’x (sinb, h,cost) = (2,7, 2)

T - « Convert to cylindrical image coordinates
— 1y”n — G.5) = (0, 5h) + (e, 1)
— s defines size of the final image
h
(:‘E:ZI)T_' 6 \
unwrapped cylinder fj[

—

z  cylindrical image
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*Given focal length f and image

center (x,y.)

Cylindrical warping

—ic
L=
~—_ S
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Spherical warping

*Given focal length f and image
center (x,y.)

S <O
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Nl TR S T =g
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3D rotation

*Rotate image before placing

on unrolled sphere 0 = (xcyl —xc)/ f
P = (?chl —Ye)/f
xr = sSinf Ccos g
y = sing
Z =— CO0S U cCos
y = fy/Z+ye

CS 6550



Radial distortion

* Correct for “bending” in wide field of view lenses

= 2 = ;2442
7 = /(14 k17 + kof)
) = §/(1 4 k172 + ko)
r = ff’/%—-:cc
Yy — f@l/g"yc

CS 6550



Fisheye lens

* Extreme “bending” in ultra-wide fields of view

P2 = 324 52

(cos 6 sin ¢, sin 0 sin ¢, cos @) = s (x,y, 2)

uations become

, | A

r = Ss¢ocosf =s—tan " —,
r 2
. Y T

Yy = sosinf =sZtan -,
r 2

CS 6550



Image Stitching

1. Align the images over each other

— camera pan € translation on cylinder

2. Blend the images together

CS 6550 Szeliski



Assembling the panorama

 Stitch pairs together, blend, then crop

CS 6550



Problem: Drift

* Error accumulation
— small (vertical) errors accumulate over time
— apply correction so that sum = 0 (for 360° pan.)

CS 6550



Problem: Drift

(X1,¥1)

(Xn:¥n)

e Solution copy of first

— add another copy of first image at the end 'Ma9¢
— this gives a constraint: y, =y,

— there are a bunch of ways to solve this problem

* add displacement of (y, —vy,)/(n -1) to each image after the
first

 compute a global warp: y’ =y + ax

* run a big optimization problem, incorporating this constraint

— best solution, but more complicated
CS 6550 — known as “bundle adjustment”




Full-view (360° spherical)
panoramas

CS 6550
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Full-view Panorama

Szeliski



Global alignment

e Register all pairwise overlapping images
e Use a 3D rotation model (one R per image)

e Use direct alignment (patch centers) or
feature based

e Infer overlaps based on previous matches
(incremental)

e Optionally discover which images overlap
other images using feature selection (RANSAC)

CS 6550



Bundle adjustment formulations

Confidence / uncertainty of point i in image j
All pairs optimization:
: ~ A A 12
Ean—pairs—oD = ZZ CijCik || Tin(Zij; Ry, [ Ry [r) — Tix||” (9.29)

i gk Map 2D point i in image j to 2D point in image k

Full bundle adjustment, using 3-D point positions {Z; }
EBA oD — ZZCHH$U L R fj.) ‘B?j 2 \ (930}

Map 3D point i /n to 2D point in image i

Bundle adjustment using 3-D ray:

Ega—sp _chunml (2 Ry, f5) — xil|%. (9.31)

7 3-D ray from point i
All-pairs 3-D ray formulation:

Ean—pairs—3p = ZZ CiiCik||Ti(Zij; Ry, fj) — Ti(Tix; Ry fi)l]%. (9.32)

ik 3-D ray from points i and j

Projected point === 7. ~ K.R.x; and x; ~ R7'K'%,;;, €+— 3-Dra '
i~ W R i~ I . i, —_— 3 y from point
CS 6550 S




Summary

* I[mage alignment is very essential in many
computer vision applications

* Selection of appropriate image transformations
is very important and usually depends on the
application domains.

* Image mosaicing/stitching is very common in
many applications, such as panoramas, medical
Imaging, etc.
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