

Unit 7

Image Alignment and Stitching

Reading: Szeliski's book
Sec. 6.1
Chapter 9: Image Stitching

Image Alignment and Stitching

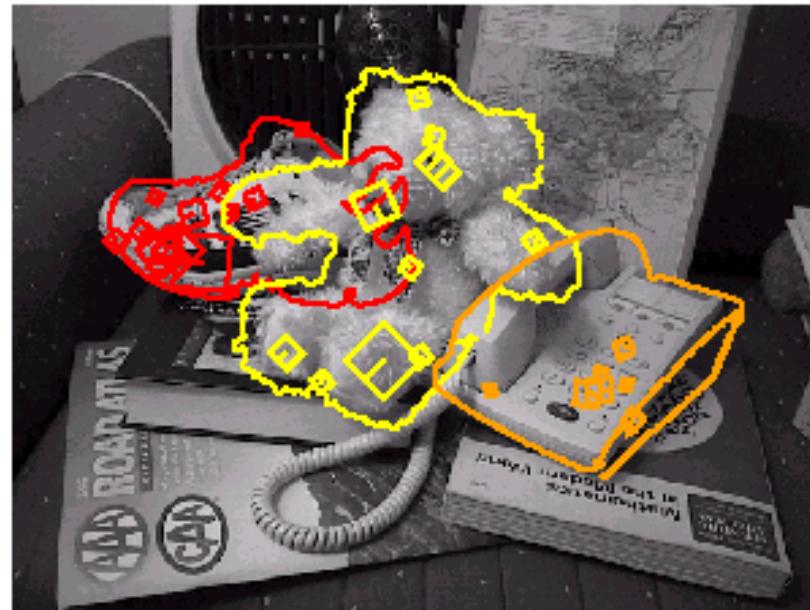
- Homographies
- Rotational Panoramas
- RANSAC
- Global alignment
- Warping
- Blending

(a)

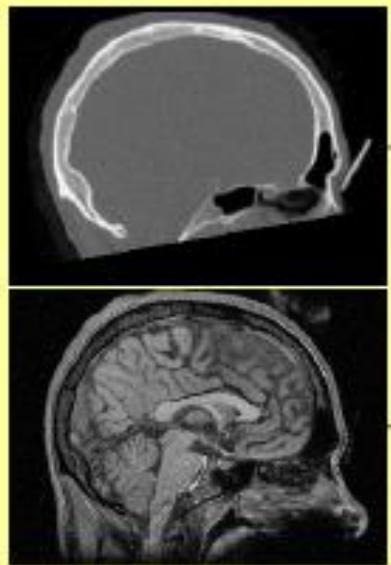
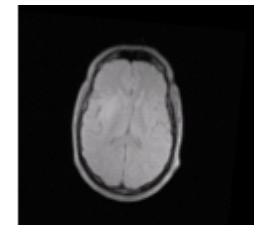
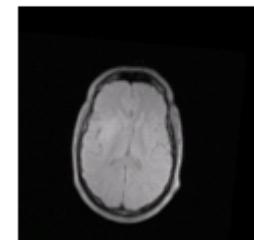
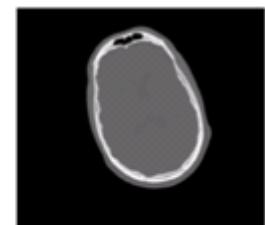
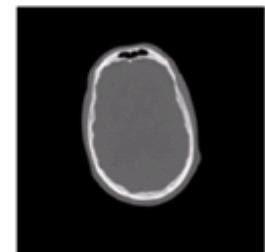
(b)

(c)

Motivation: Recognition



Motivation: medical image registration

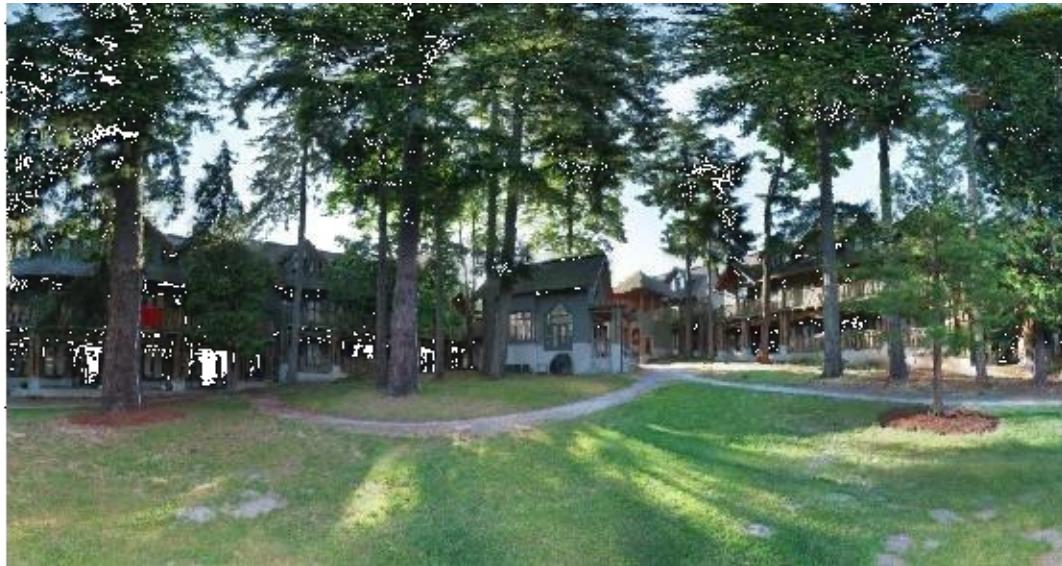


Motivation: Mosaics

- Getting the whole picture
 - Consumer camera: $50^\circ \times 35^\circ$

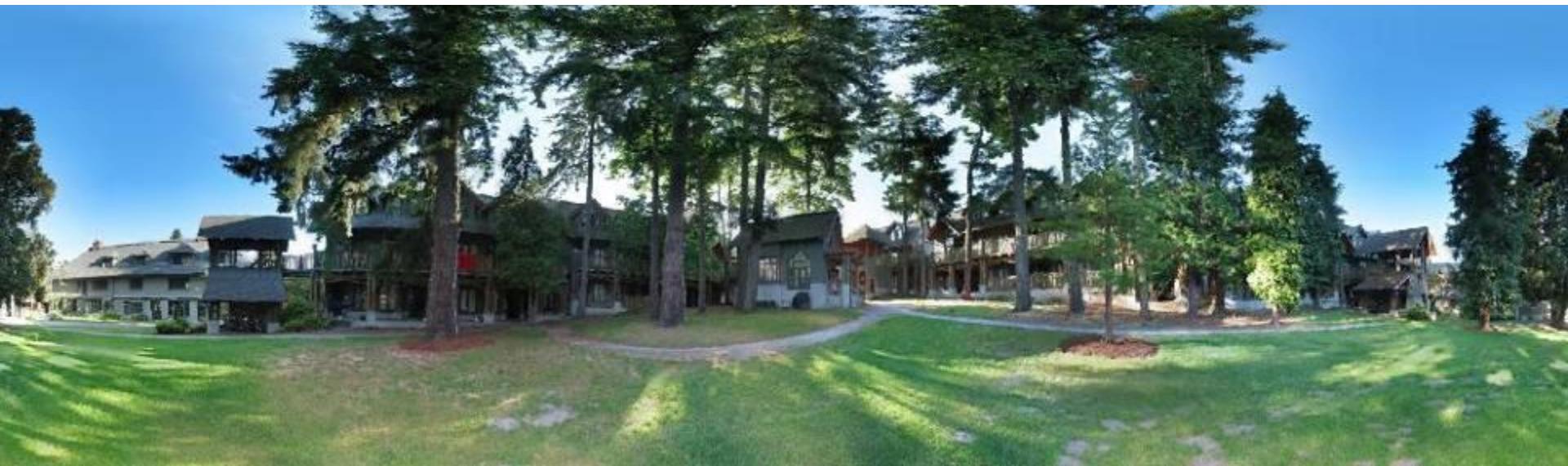
Motivation: Mosaics

- Getting the whole picture
 - Consumer camera: $50^\circ \times 35^\circ$
 - Human Vision: $176^\circ \times 135^\circ$



Motivation: Mosaics

- Getting the whole picture
 - Consumer camera: $50^\circ \times 35^\circ$
 - Human Vision: $176^\circ \times 135^\circ$



- Panoramic Mosaic = up to $360 \times 180^\circ$

Motion models

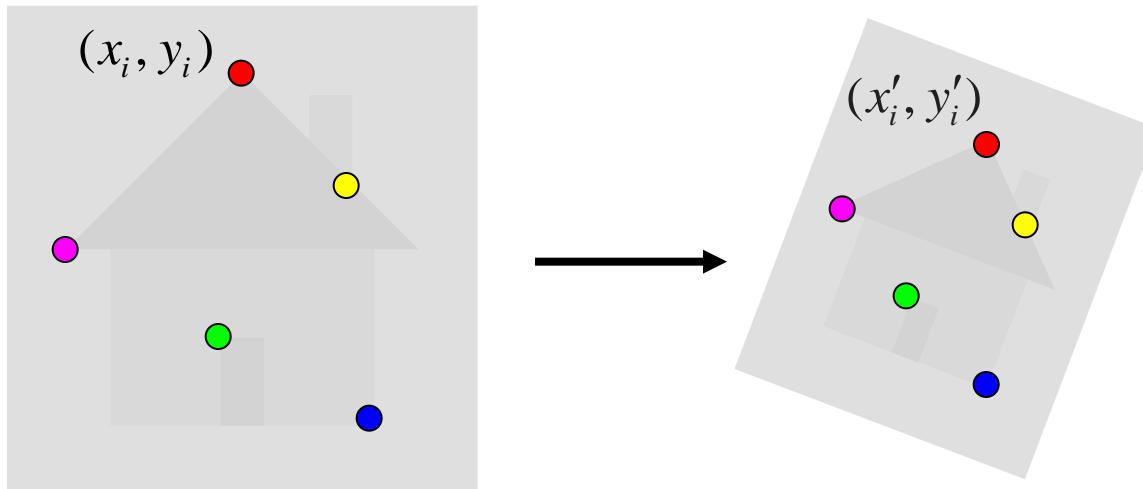
- What happens when we take two images with a camera and try to align them?
- translation?
- rotation?
- scale?
- affine?
- perspective?
- ... see interactive demo (VideoMosaic)

Fitting an affine transformation

Affine model approximates perspective projection of planar objects.

Fitting an affine transformation

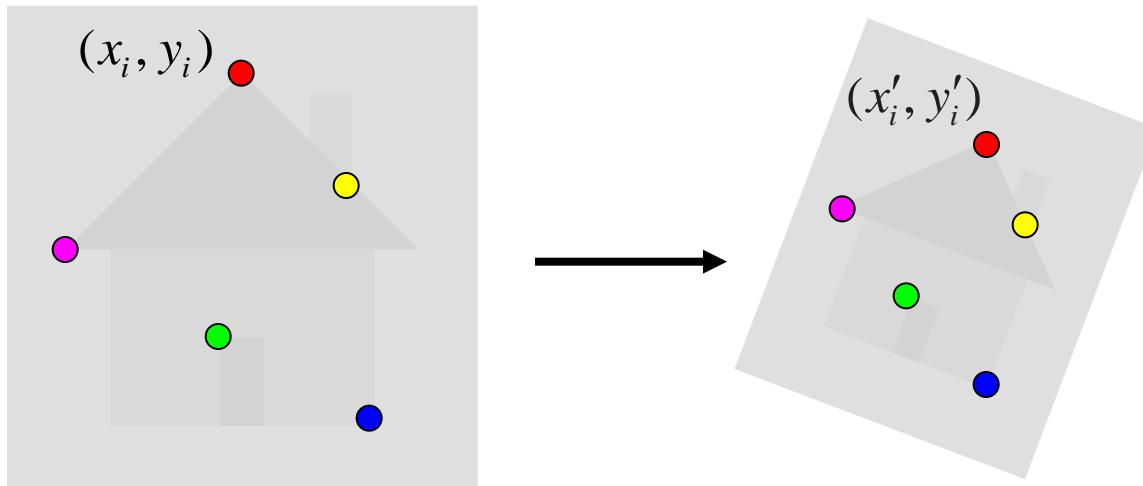
- Assuming we know the correspondences, how do we get the transformation?



$$\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?



$$\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

$$\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$$

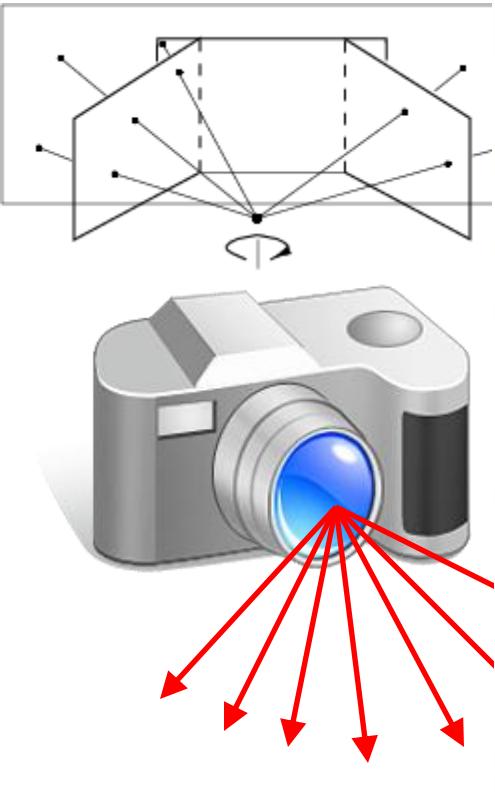
$$\begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{bmatrix}^{12} = \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$$

Fitting an affine transformation

$$\begin{bmatrix} & & \cdots & & & \\ x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & \cdots & & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} \cdots \\ x'_i \\ y'_i \\ \cdots \end{bmatrix}$$

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for (x_{new}, y_{new}) ?

Panoramas

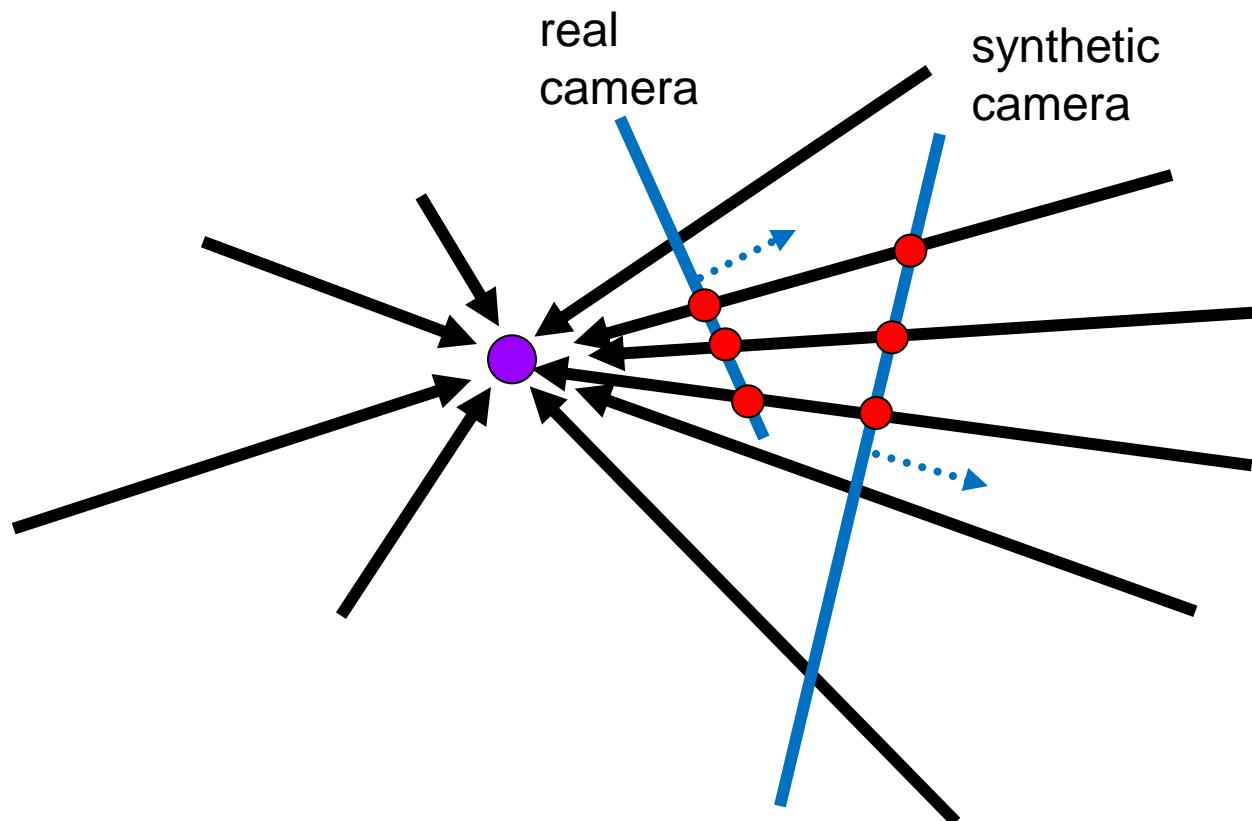


Obtain a wider angle view by combining multiple images.

How to stitch together a panorama?

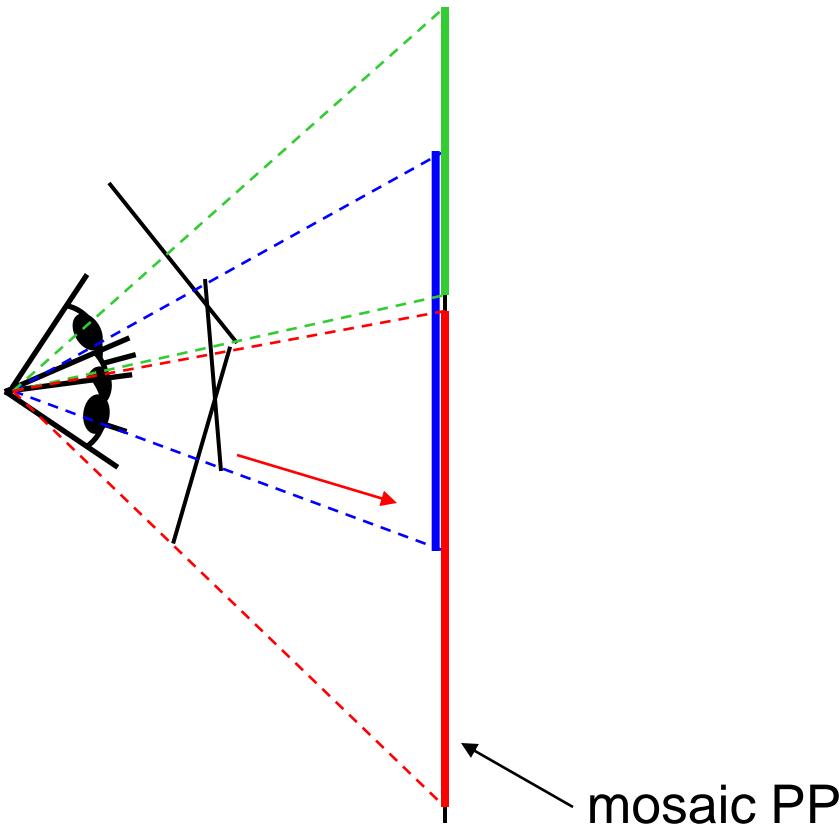
- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - (If there are more images, repeat)
- ...but **wait**, why should this work at all?
 - What about the 3D geometry of the scene?
 - Why aren't we using it?

Panoramas: generating synthetic views



Can generate any synthetic camera view
as long as it has **the same center of projection!**

Image reprojection



The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a *synthetic wide-angle camera*

Homography

How to relate two images from the same camera center?

- how to map a pixel from PP1 to PP2?

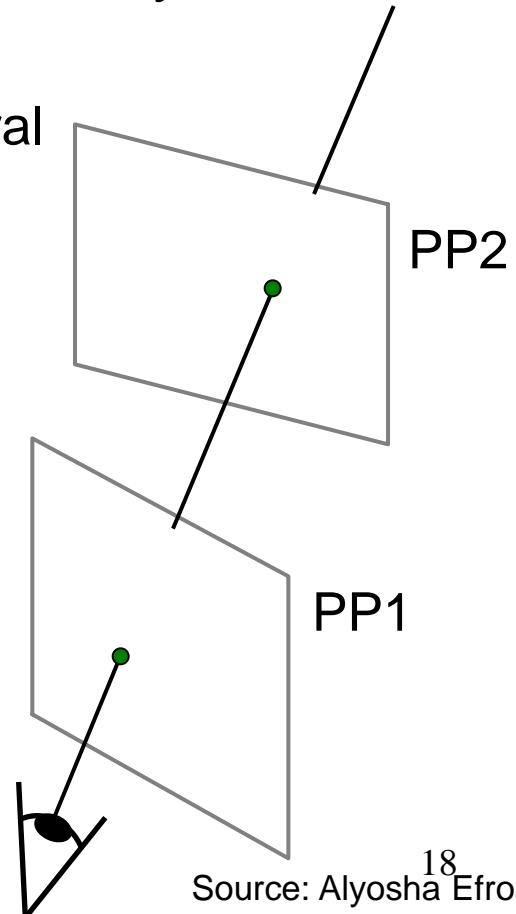
Think of it as a 2D **image warp** from one image to another.

A projective transform is a mapping between any two PPs with the same center of projection

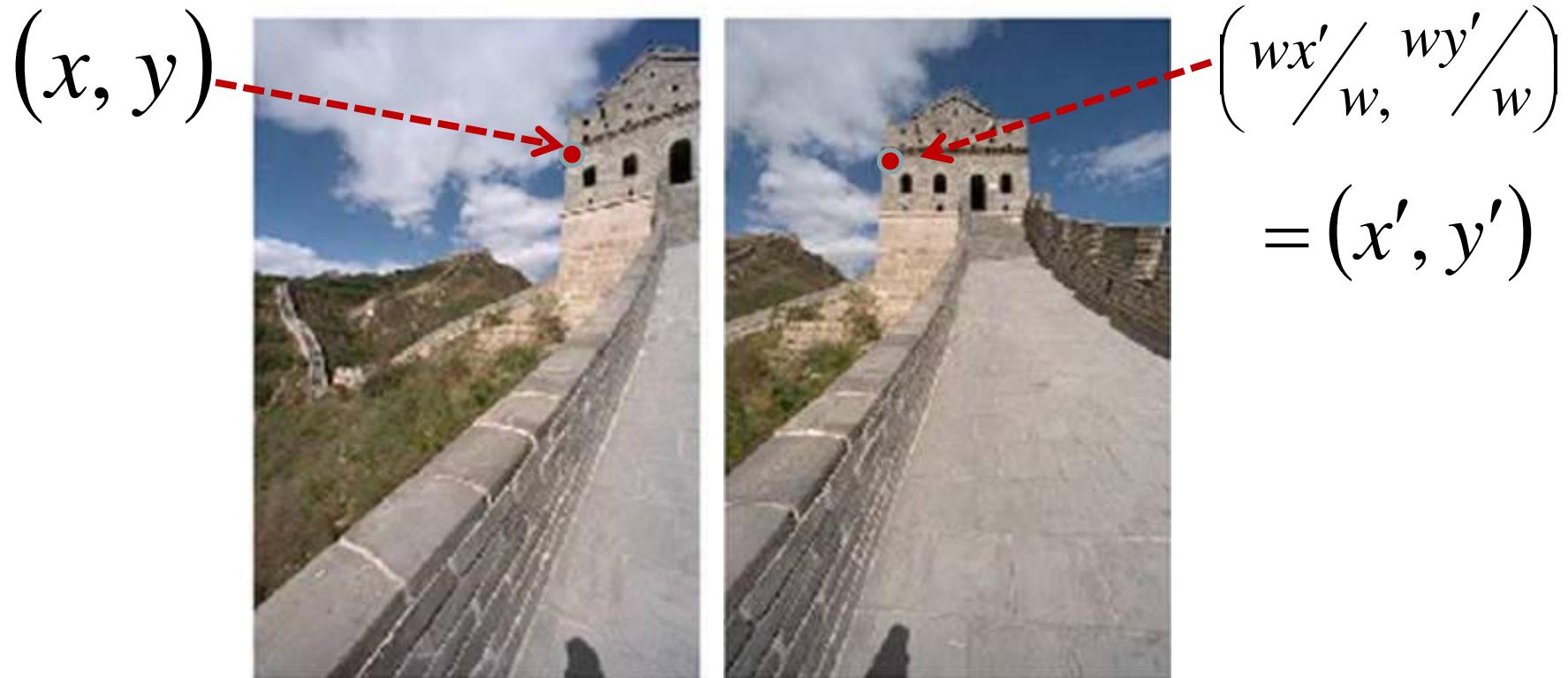
- rectangle should map to arbitrary quadrilateral
- parallel lines aren't
- but must preserve straight lines

called **Homography**

$$\begin{bmatrix} wx' \\ wy' \\ w \\ p' \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \\ H & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \\ p \end{bmatrix}$$



Homography



To **apply** a given homography \mathbf{H}

- Compute $\mathbf{p}' = \mathbf{H}\mathbf{p}$ (regular matrix multiply)
- Convert \mathbf{p}' from homogeneous to image coordinates

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

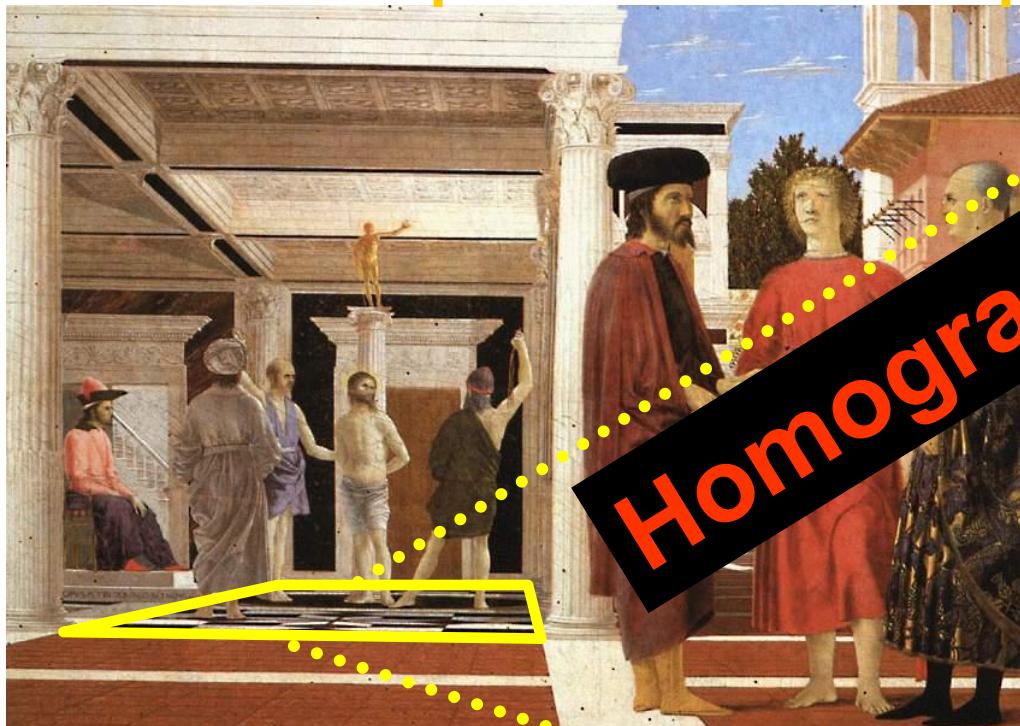
H p'

Recap: How to stitch together a panorama?

- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - (If there are more images, repeat)

Analysing patterns and shapes

What is the shape of the b/w floor pattern?



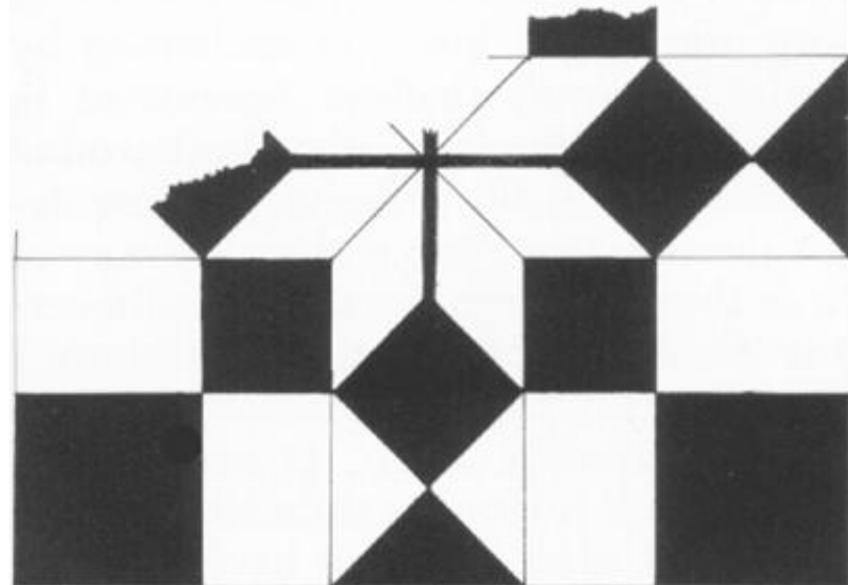
Homography

The floor (enlarged)

Automatically
rectified floor²¹

Analysing patterns and shapes

Automatic rectification



From Martin Kemp *The Science of Art*
(*manual reconstruction*)

Analysing patterns and shapes

What is the (complicated) shape of the floor pattern?

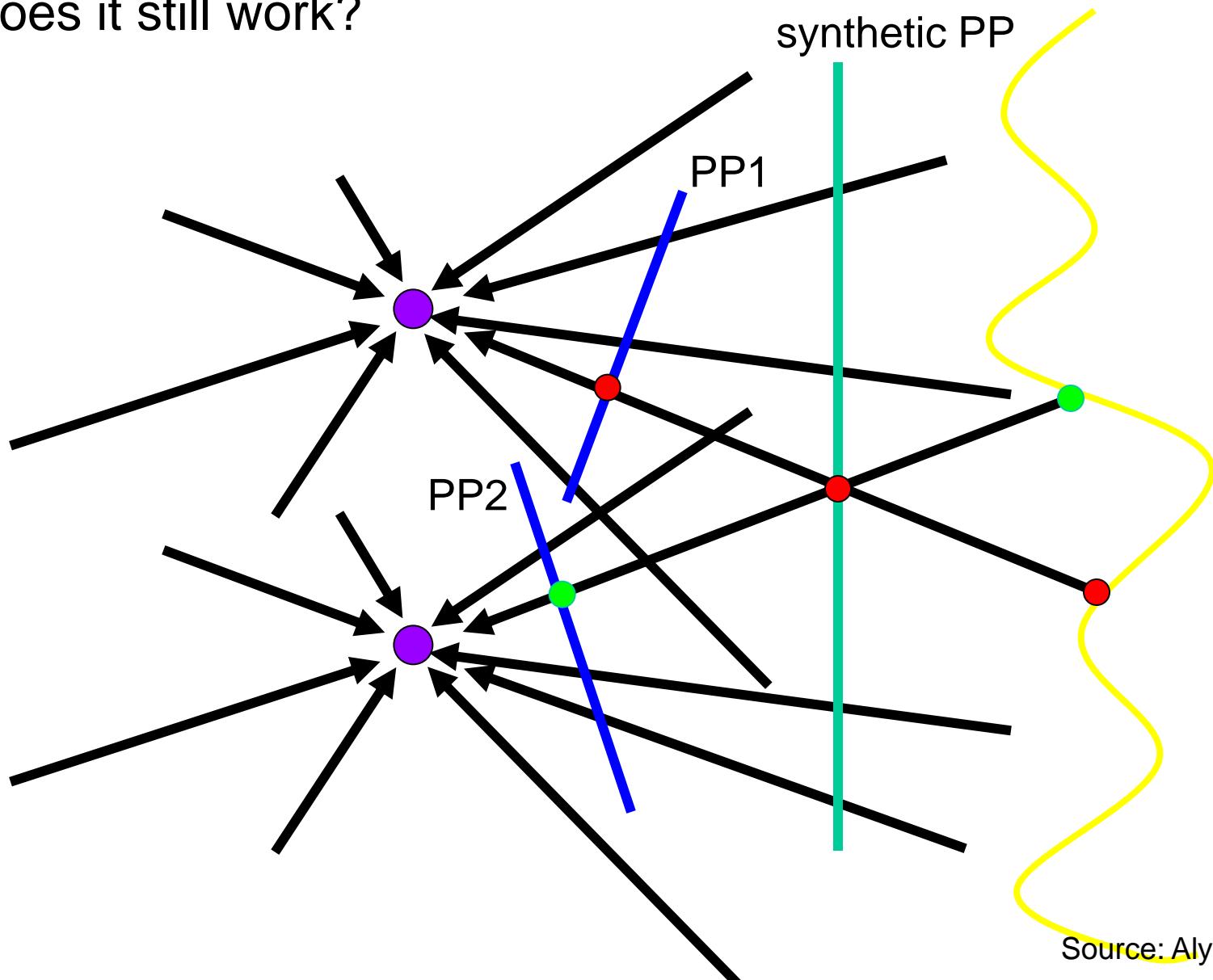
Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

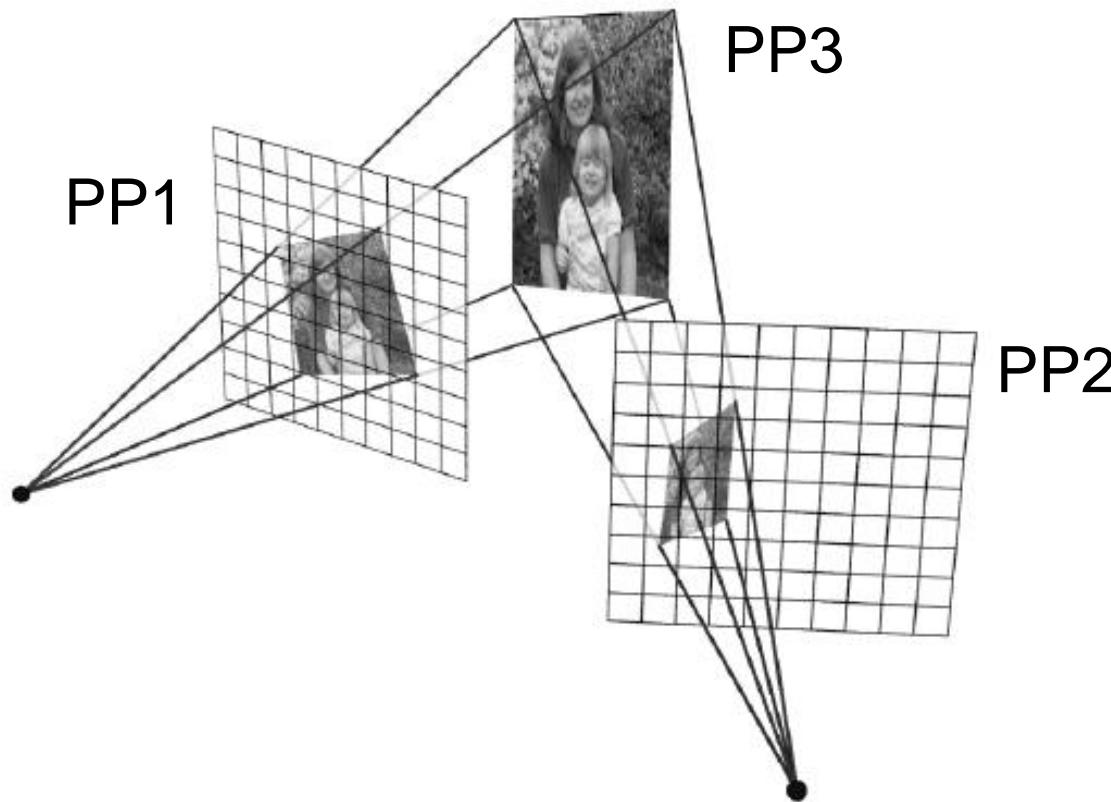
Slide from Criminisi

changing camera center

Does it still work?



Planar scene (or far away)



PP3 is a projection plane of both centers of projection,
so we are OK!

This is how big aerial photographs are made

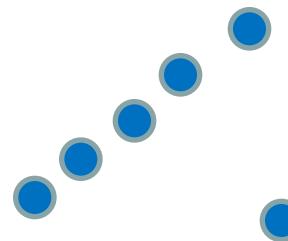
Map

Satellite

Hybrid

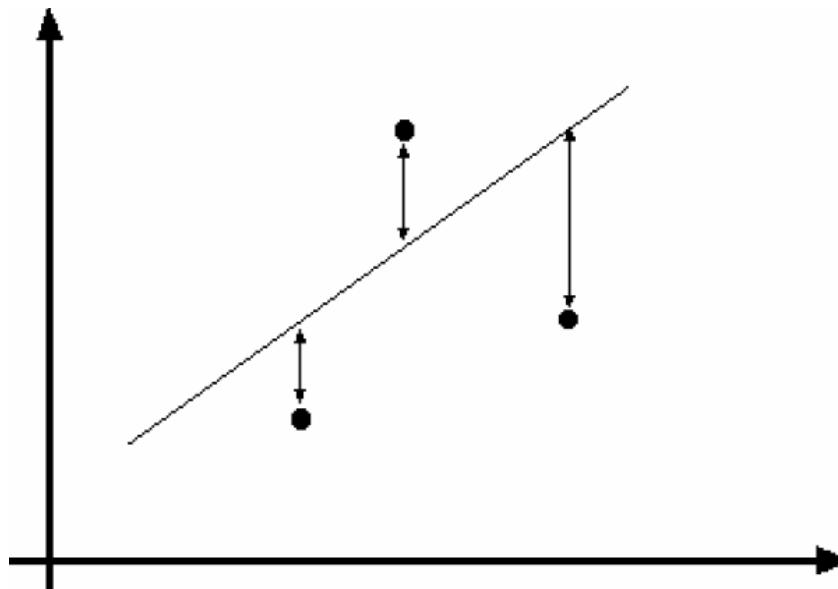
Outliers

- **Outliers** can hurt the quality of our parameter estimates, e.g.,
 - an erroneous pair of matching points from two images
 - an edge point that is noise, or doesn't belong to the line we are fitting.

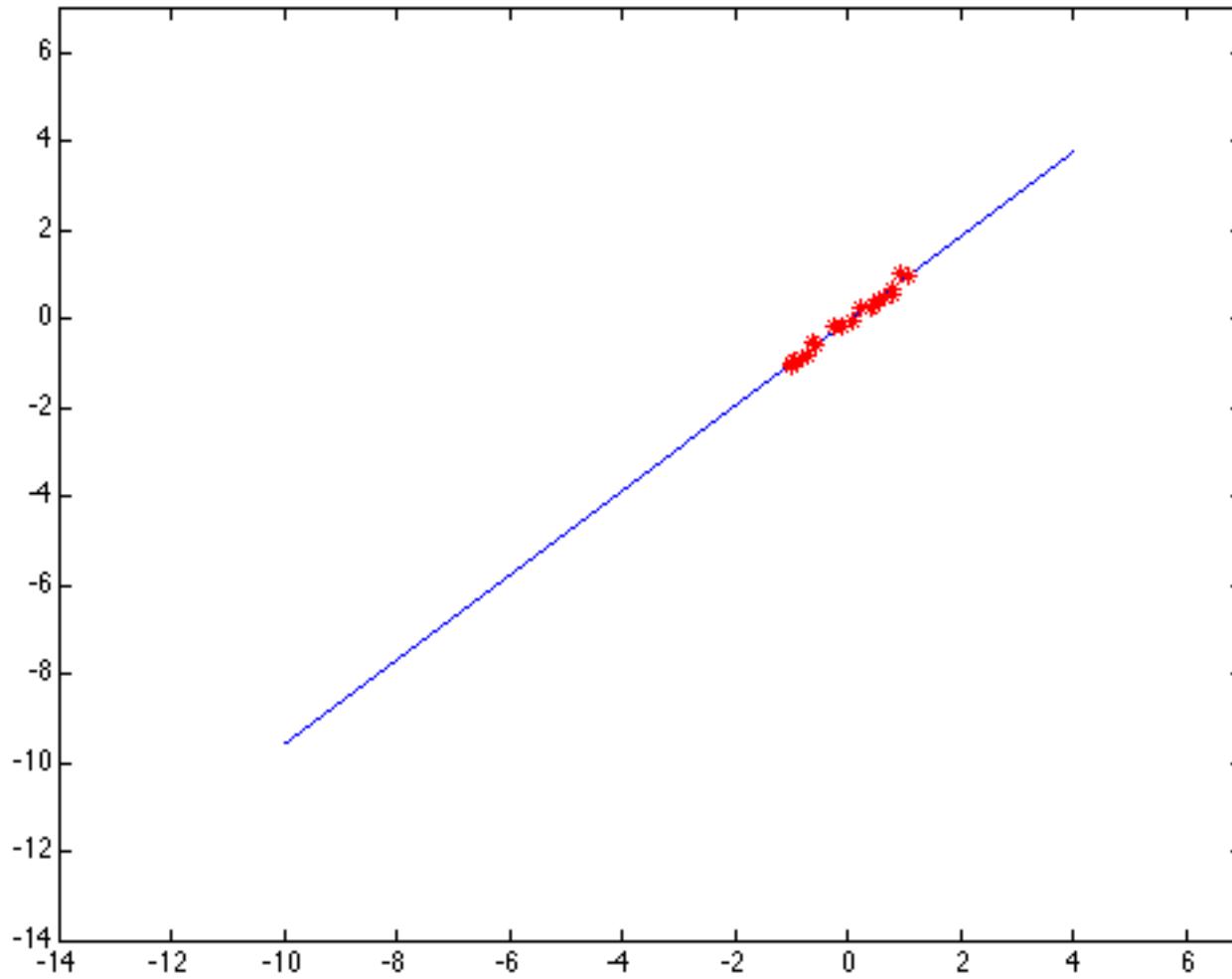


Example: least squares line fitting

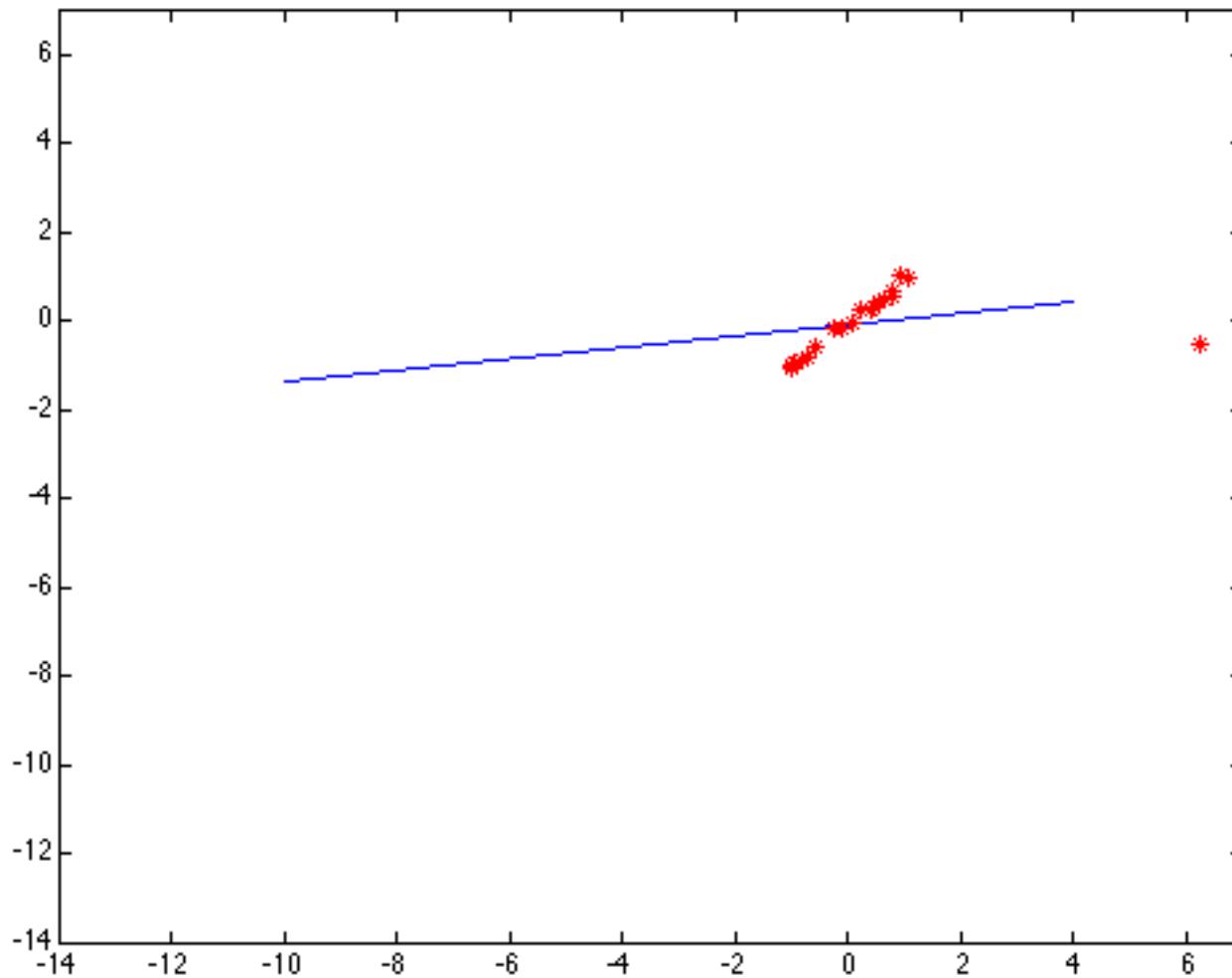
- Assuming all the points that belong to a particular line are known



Outliers affect least squares fit



Outliers affect least squares fit



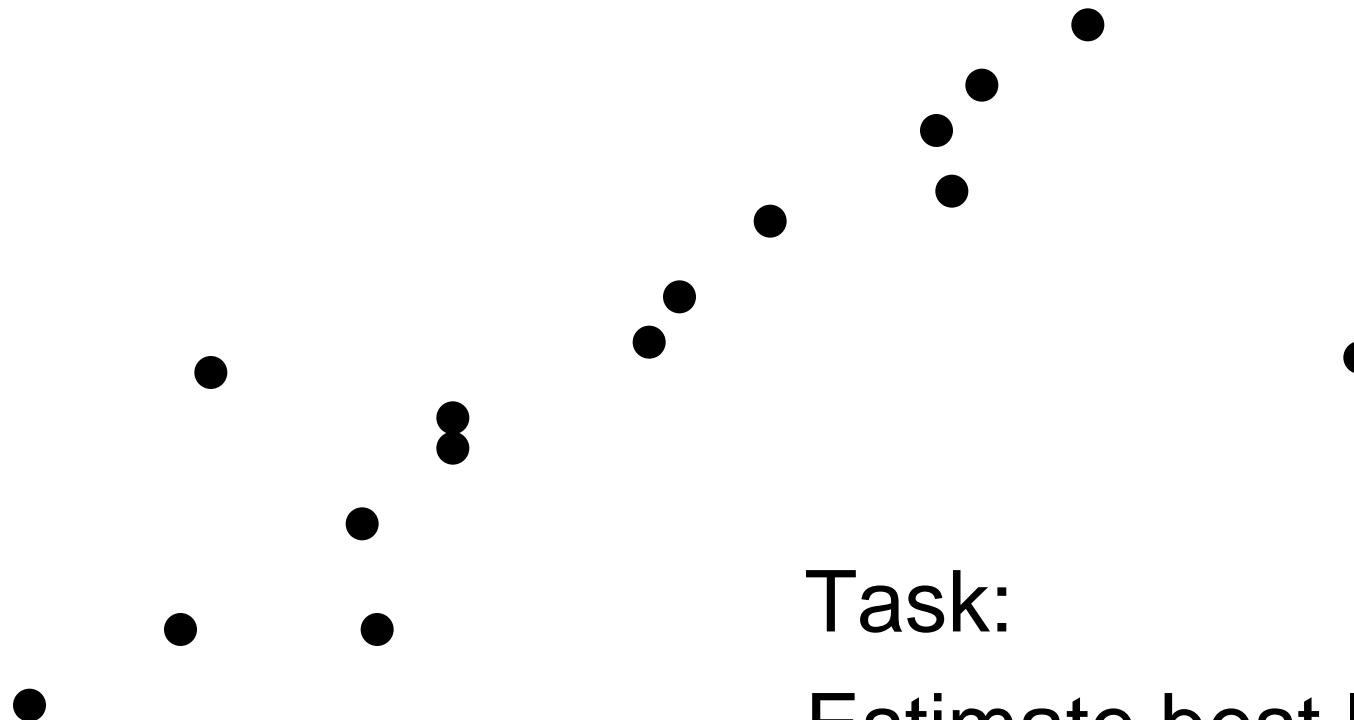
RANSAC

- RANdom Sample Consensus
- Approach: we want to avoid the impact of outliers, so let's look for “inliers”, and use those only.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC

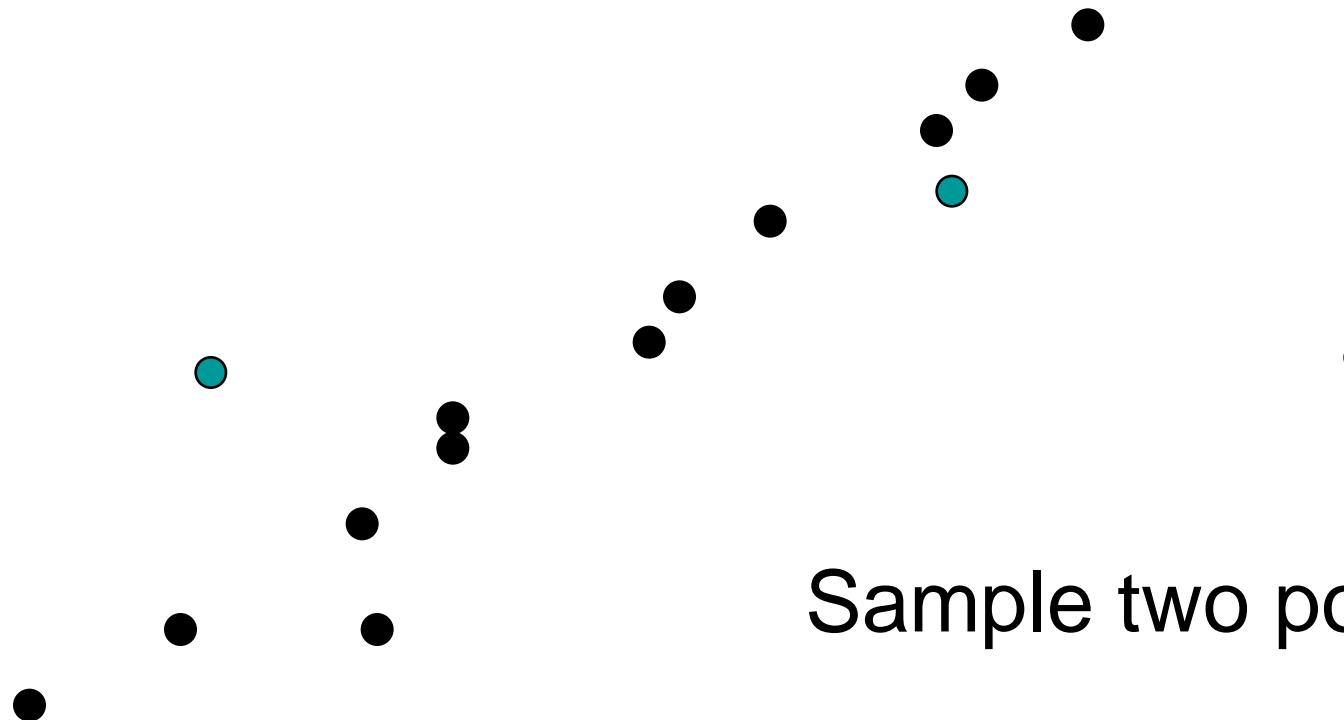
- RANSAC loop:
 1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
 2. Compute transformation from seed group
 3. Find *inliers* to this transformation
 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

RANSAC Line Fitting Example

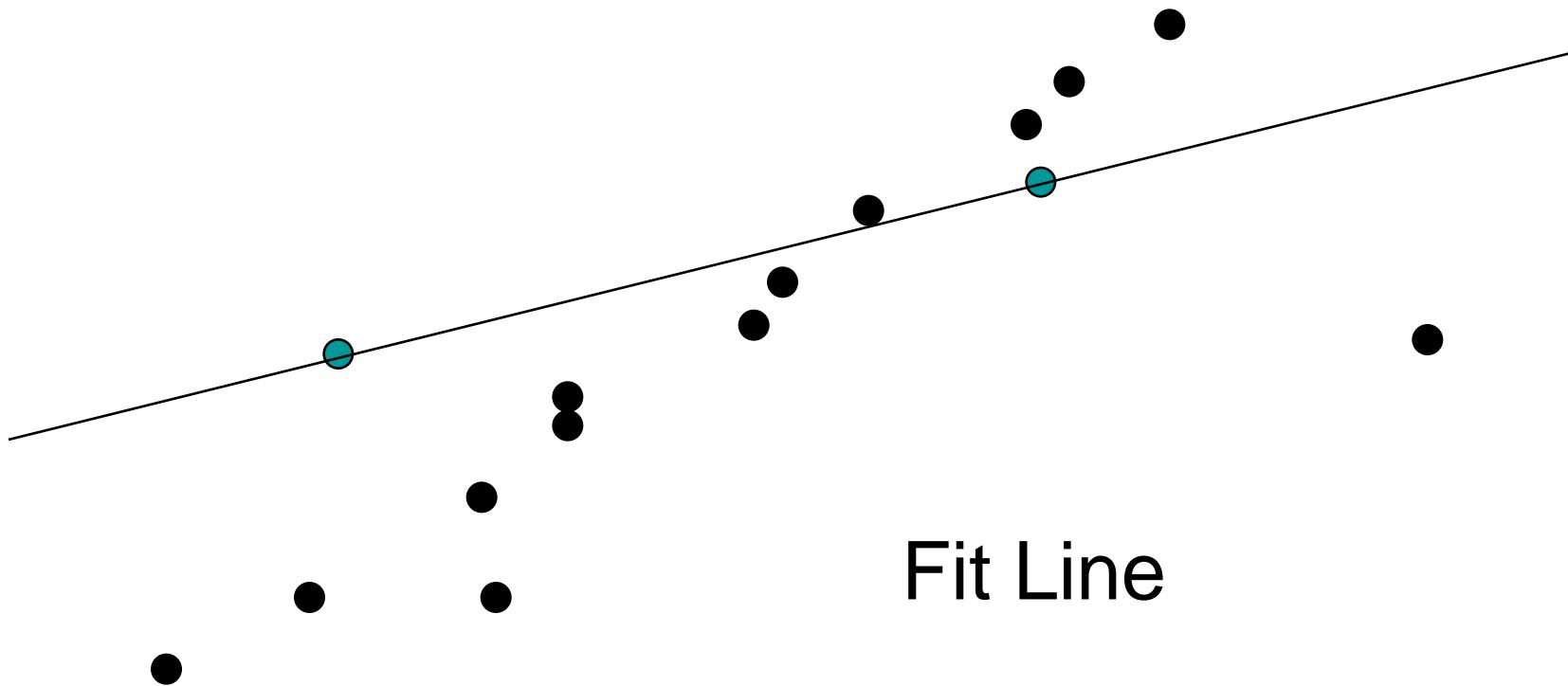


Task:
Estimate best line

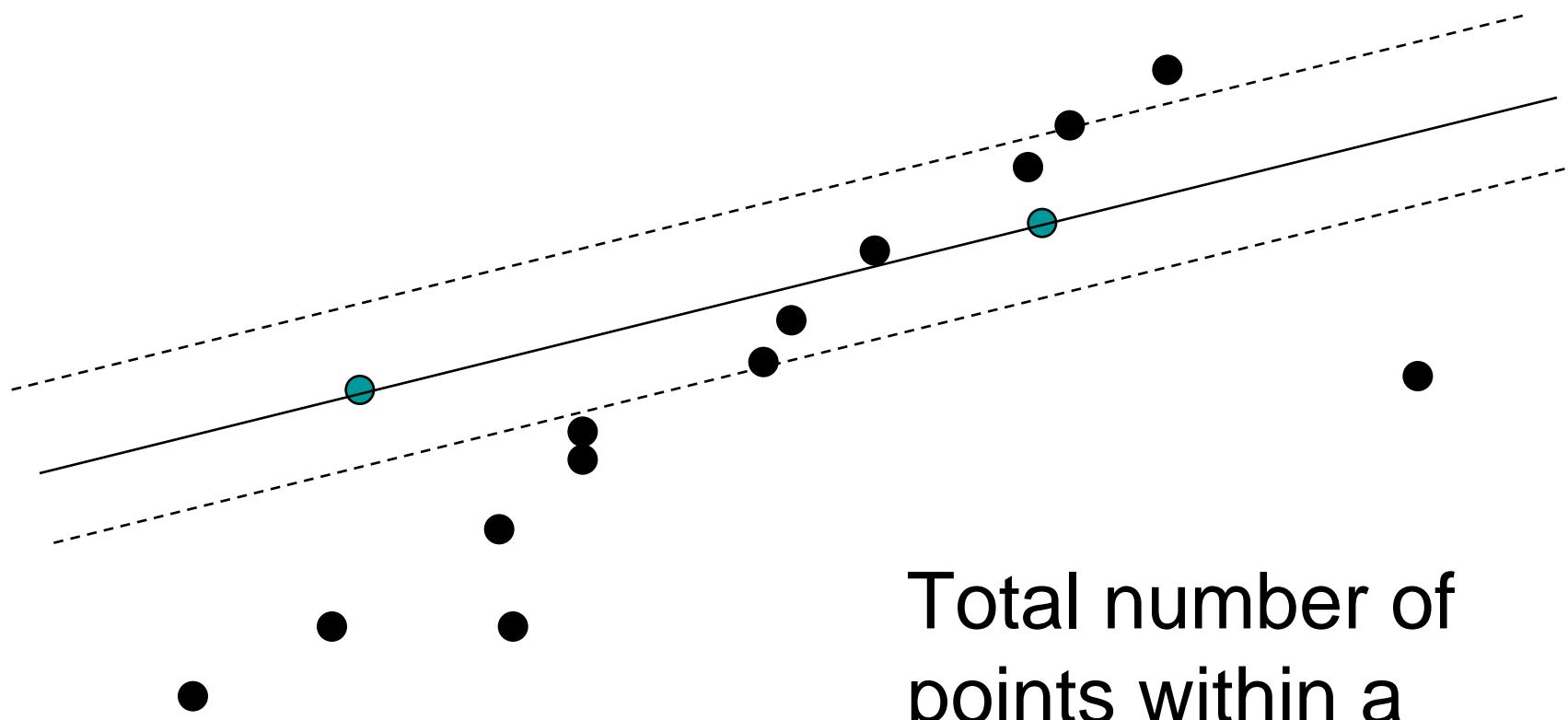
RANSAC Line Fitting Example



RANSAC Line Fitting Example



RANSAC Line Fitting Example

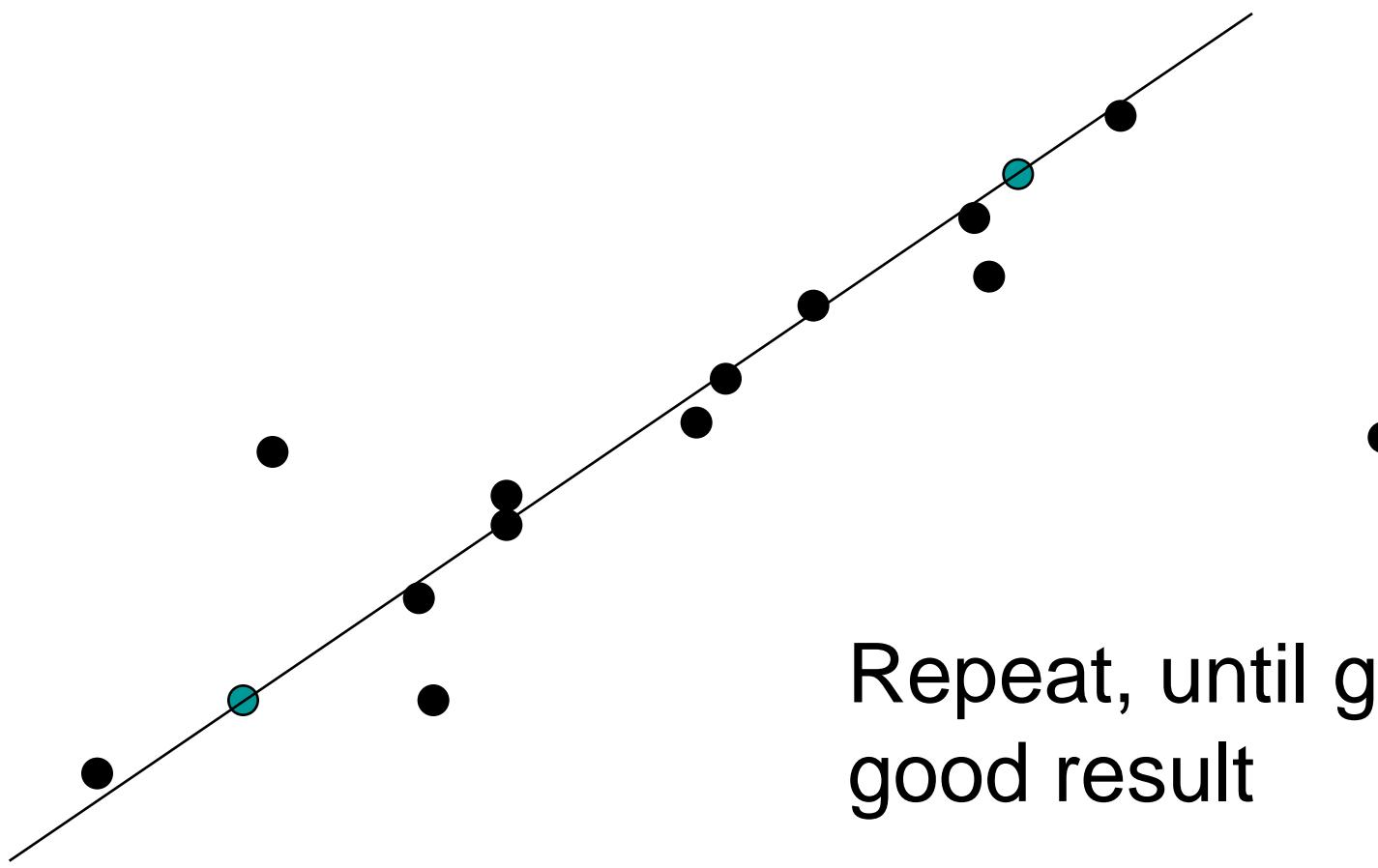


Total number of
points within a
threshold of line.

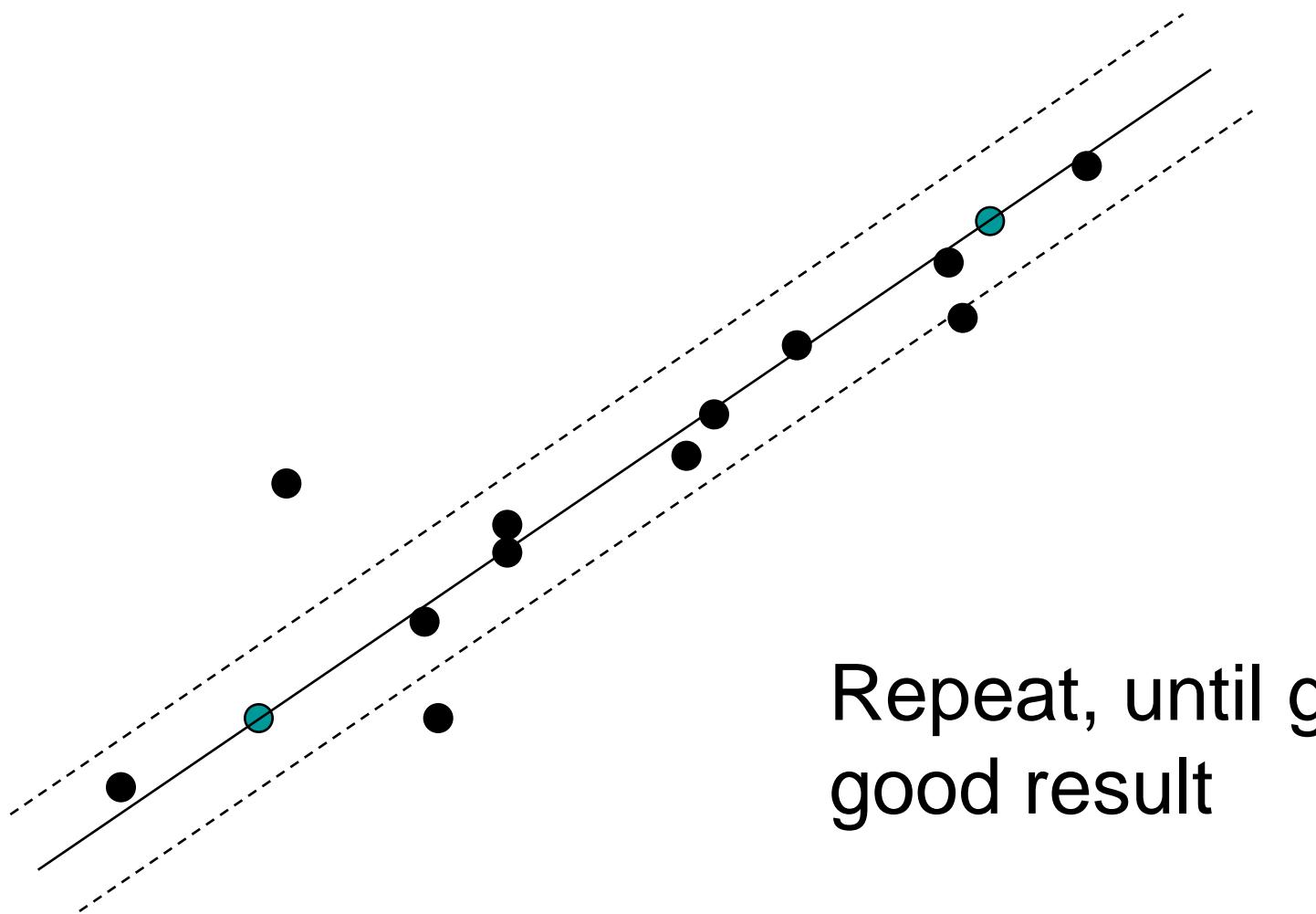
RANSAC Line Fitting Example

Repeat, until get a
good result

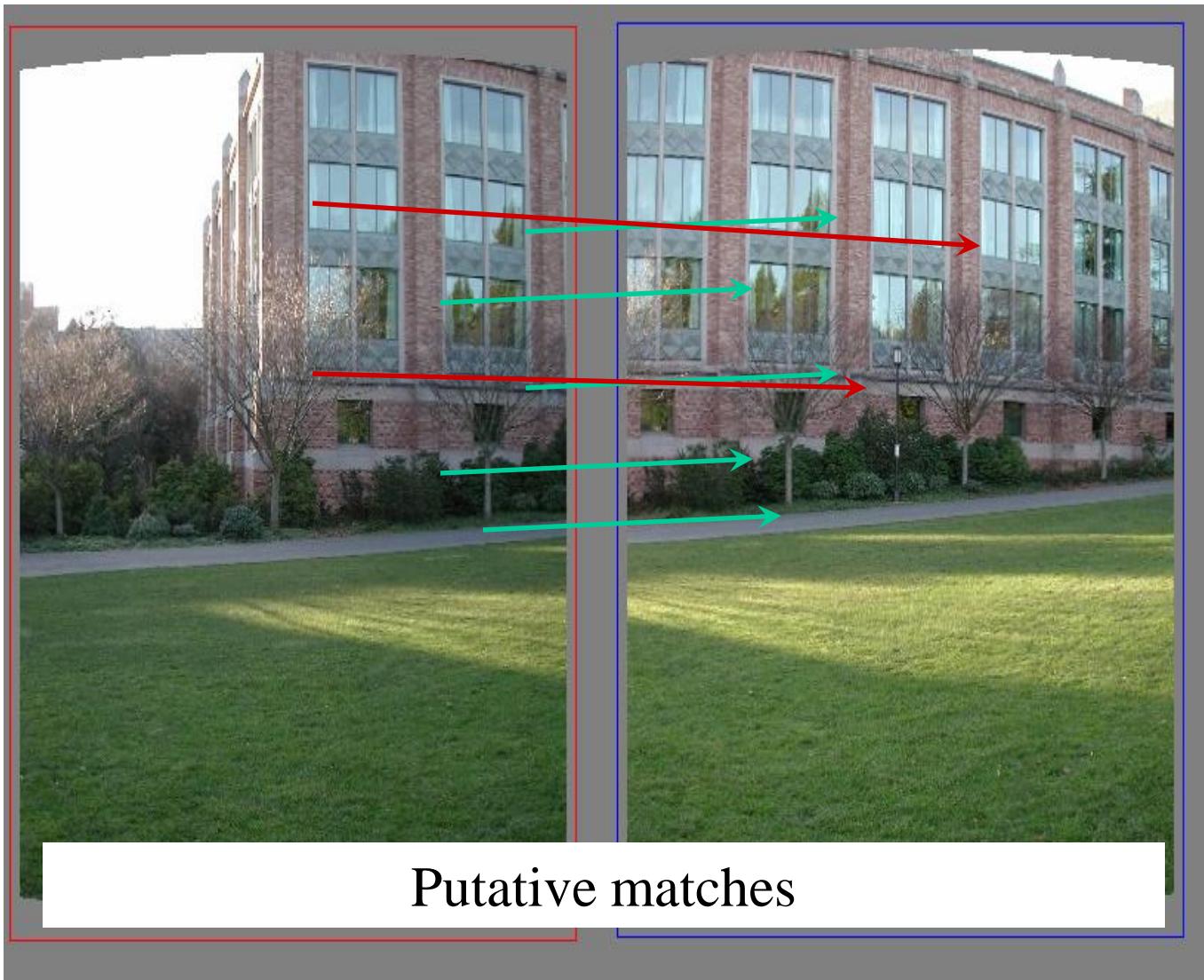
RANSAC Line Fitting Example



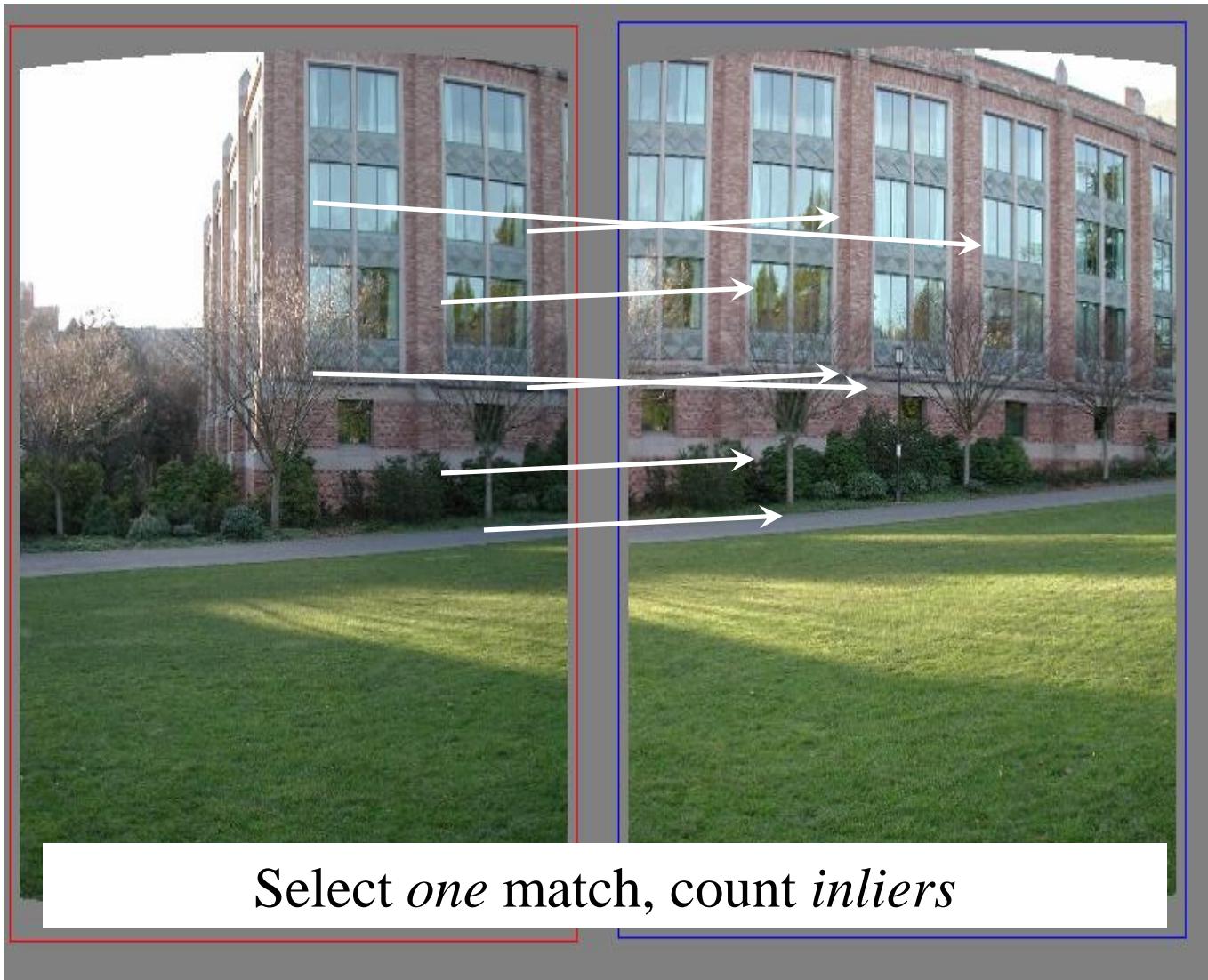
RANSAC Line Fitting Example



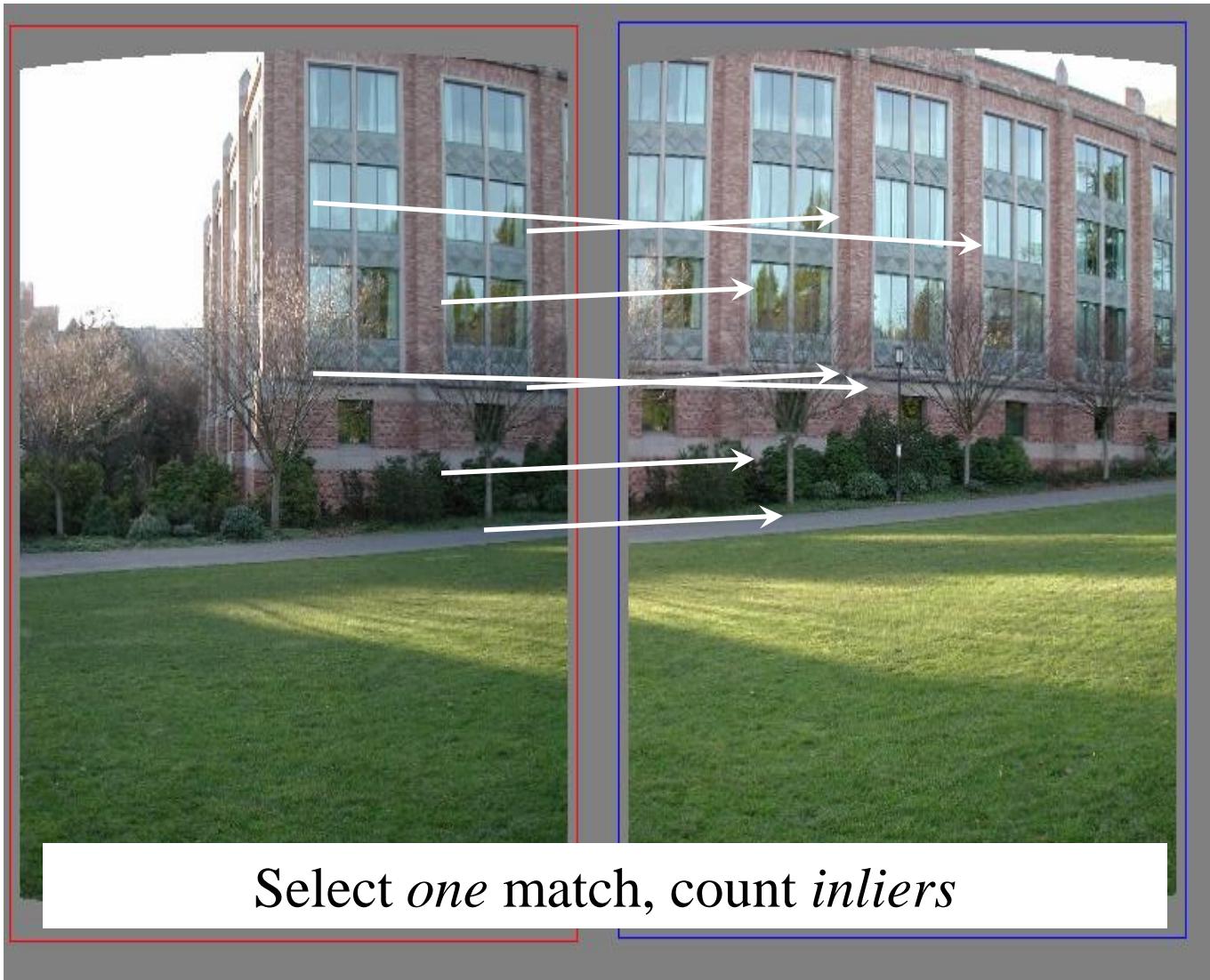
RANSAC example: Translation



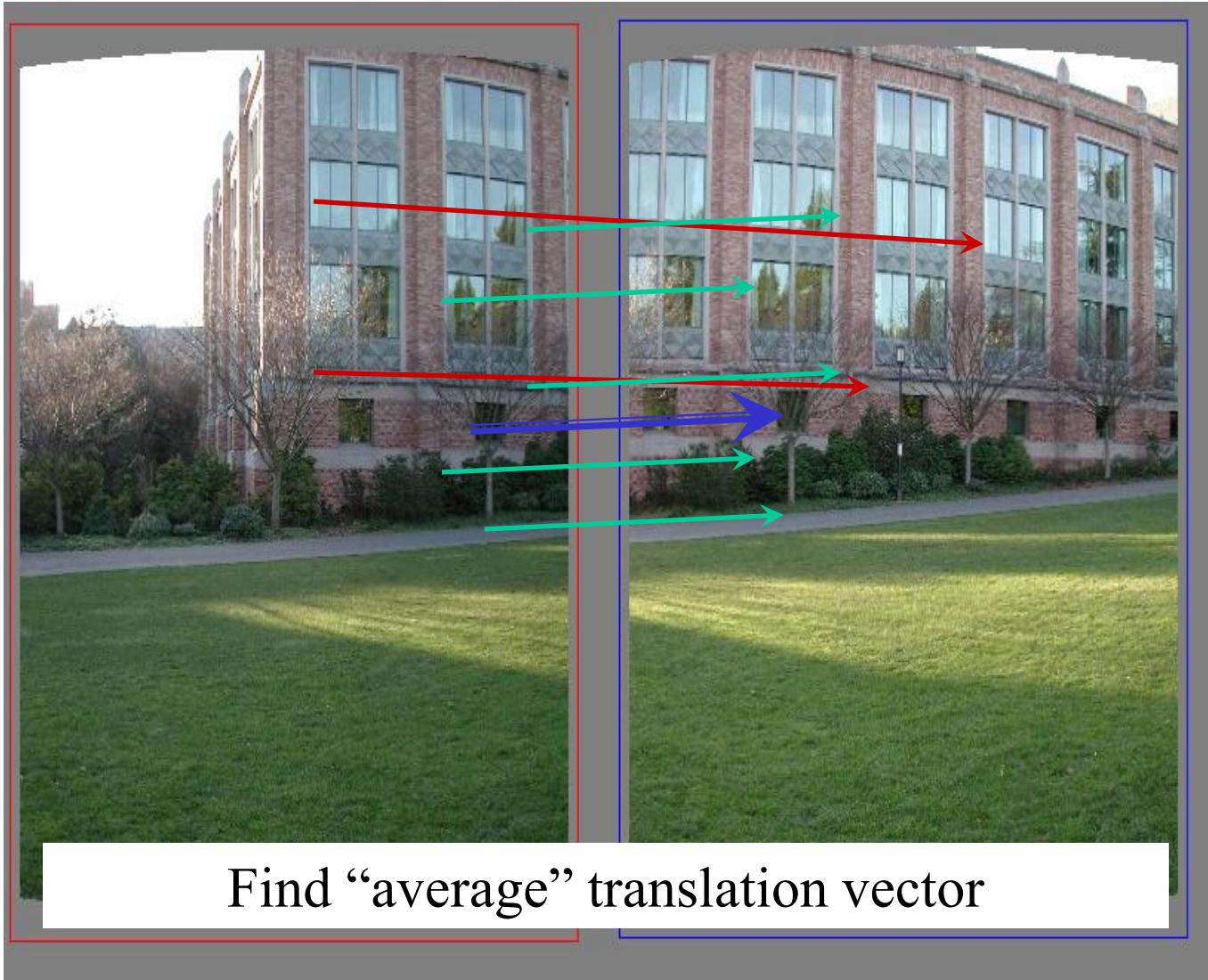
RANSAC example: Translation



RANSAC example: Translation

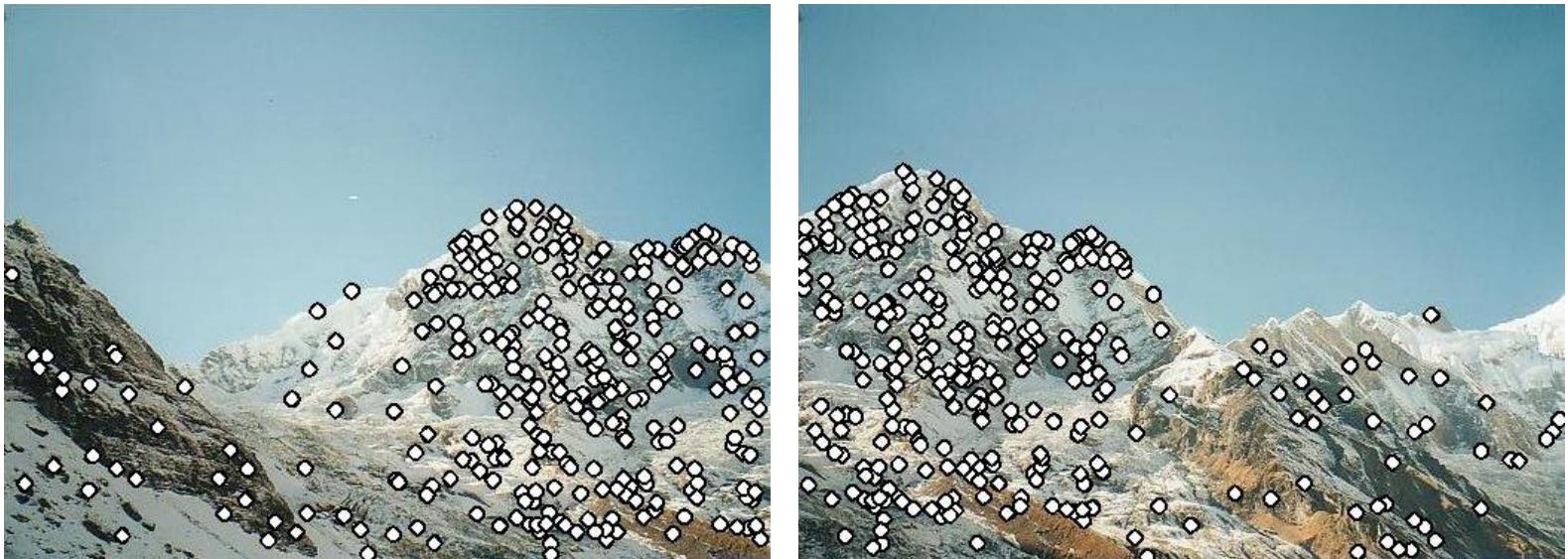


RANSAC example: Translation



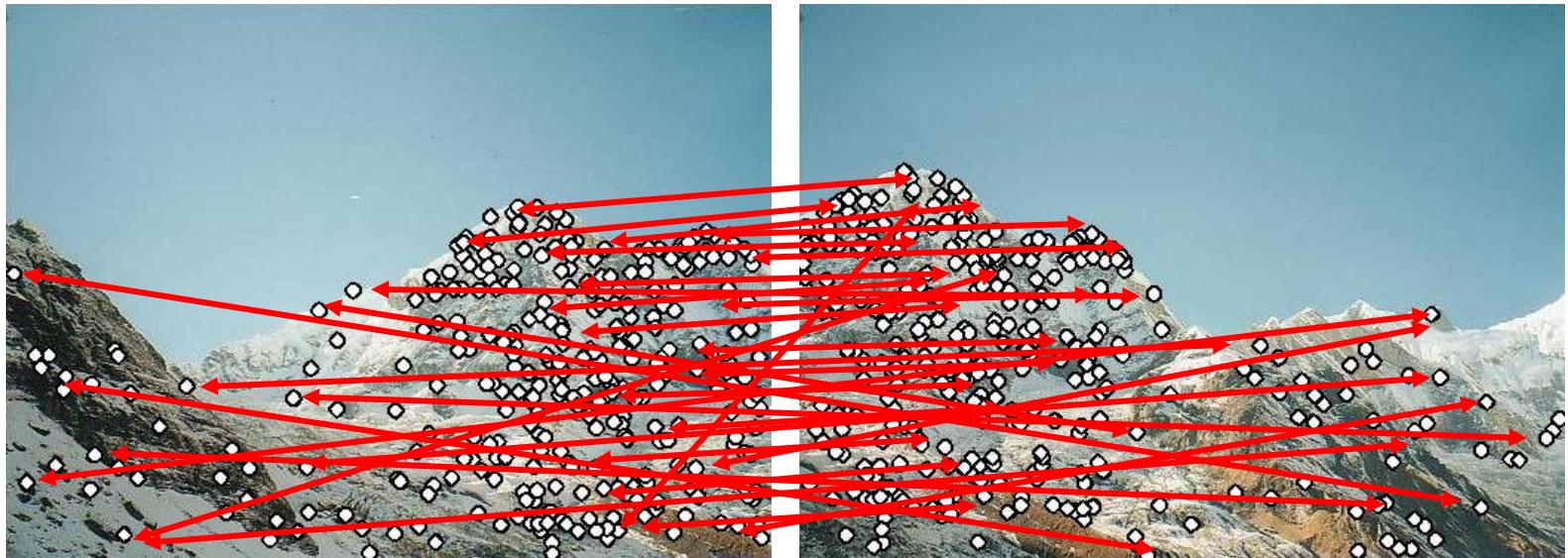
Feature-based alignment outline

Feature-based alignment outline



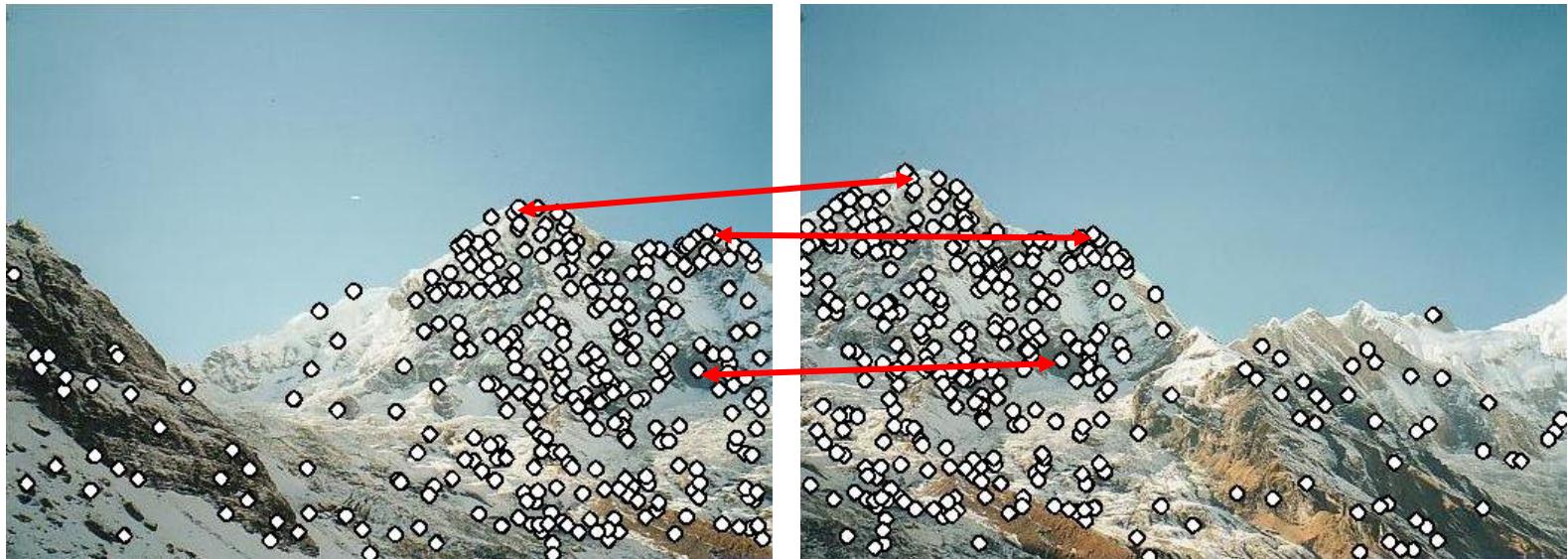
- Extract features

Feature-based alignment outline



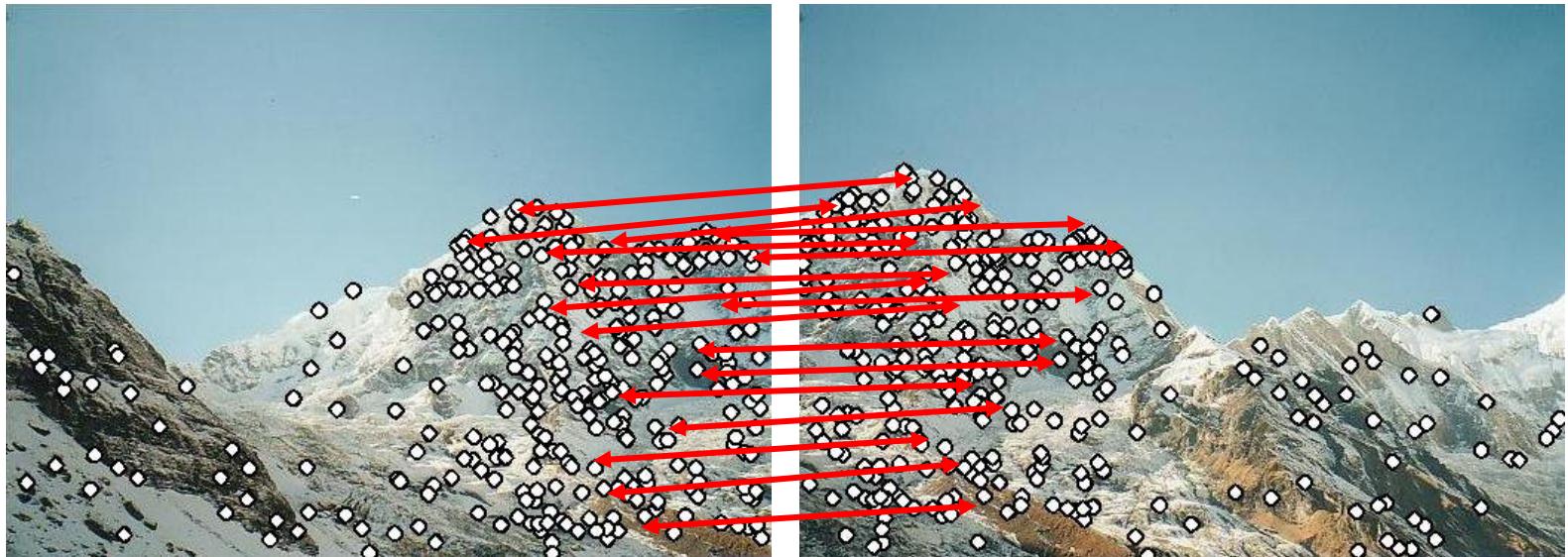
- Extract features
- Compute *putative matches*

Feature-based alignment outline



- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T (small group of putative matches that are related by T)

Feature-based alignment outline



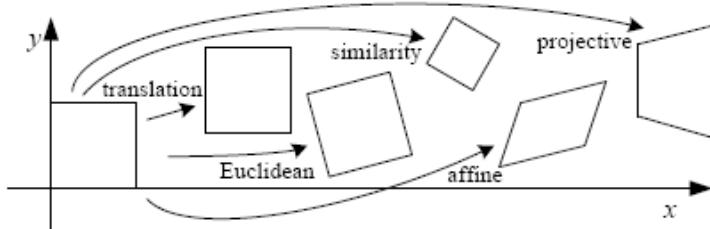
- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T (small group of putative matches that are related by T)
 - *Verify* transformation (search for other matches consistent with T)

Feature-based alignment outline

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation T (small group of putative matches that are related by T)
 - *Verify* transformation (search for other matches consistent with T)

Towards large-scale mosaics...

Motion models

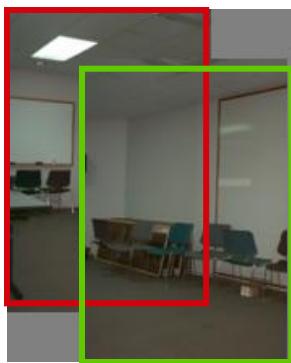


Translation

Affine

Perspective

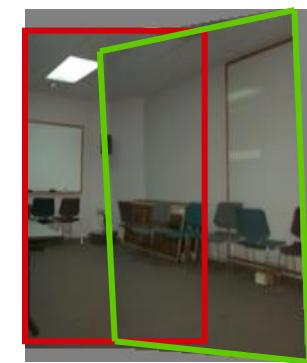
3D rotation



2 unknowns

6 unknowns

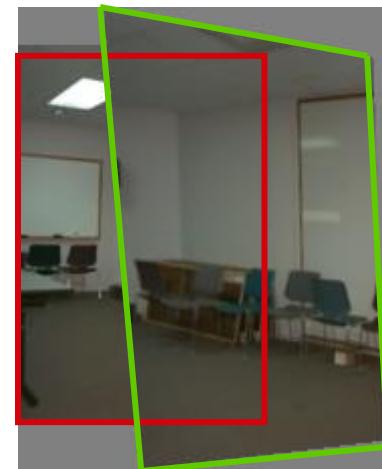
8 unknowns



3 unknowns

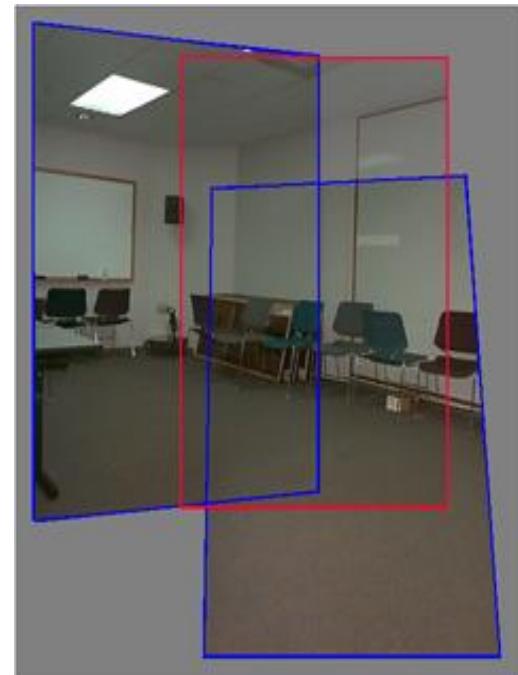
Plane perspective mosaics

- 8-parameter homographies
- Limitations:
 - local minima
 - slow convergence
 - difficult to control interactively

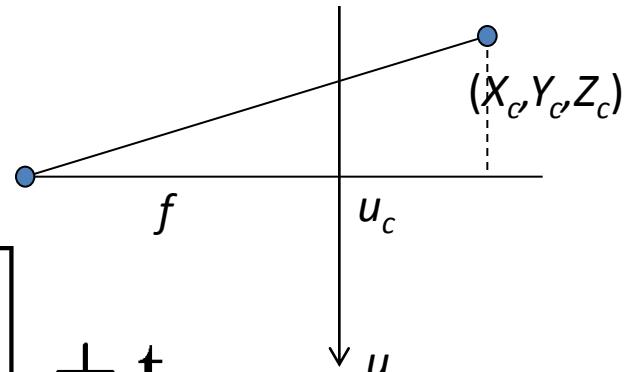


Rotational mosaics

- Directly optimize rotation and focal length
- Advantages:
 - ability to build full-view panoramas
 - easier to control interactively
 - more stable and accurate estimates



3D → 2D Perspective Projection



$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix} = [\mathbf{R}]_{3 \times 3} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \mathbf{t}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim \begin{bmatrix} U \\ V \\ W \end{bmatrix} = \begin{bmatrix} f & 0 & u_c \\ 0 & f & v_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$$

Rotational mosaic

- Projection equations
- 1. Project from image to 3D ray
 - $(x_0, y_0, z_0) = (u_0 - u_c, v_0 - v_c, f)$
- 2. Rotate the ray by camera motion
 - $(x_1, y_1, z_1) = R_{01} (x_0, y_0, z_0)$
- 3. Project back into new (source) image
 - $(u_1, v_1) = (fx_1/z_1 + u_c, fy_1/z_1 + v_c)$

Establishing correspondences

1. ‘Direct’ method:

- Use generalization of affine motion model
[Szeliski & Shum ’97]

2. Feature-based method

- Extract features, match, find consistent *inliers*
[Lowe ICCV’99; Schmid ICCV’98,
Brown&Lowe ICCV’2003]
- Compute R from correspondences
(absolute orientation)

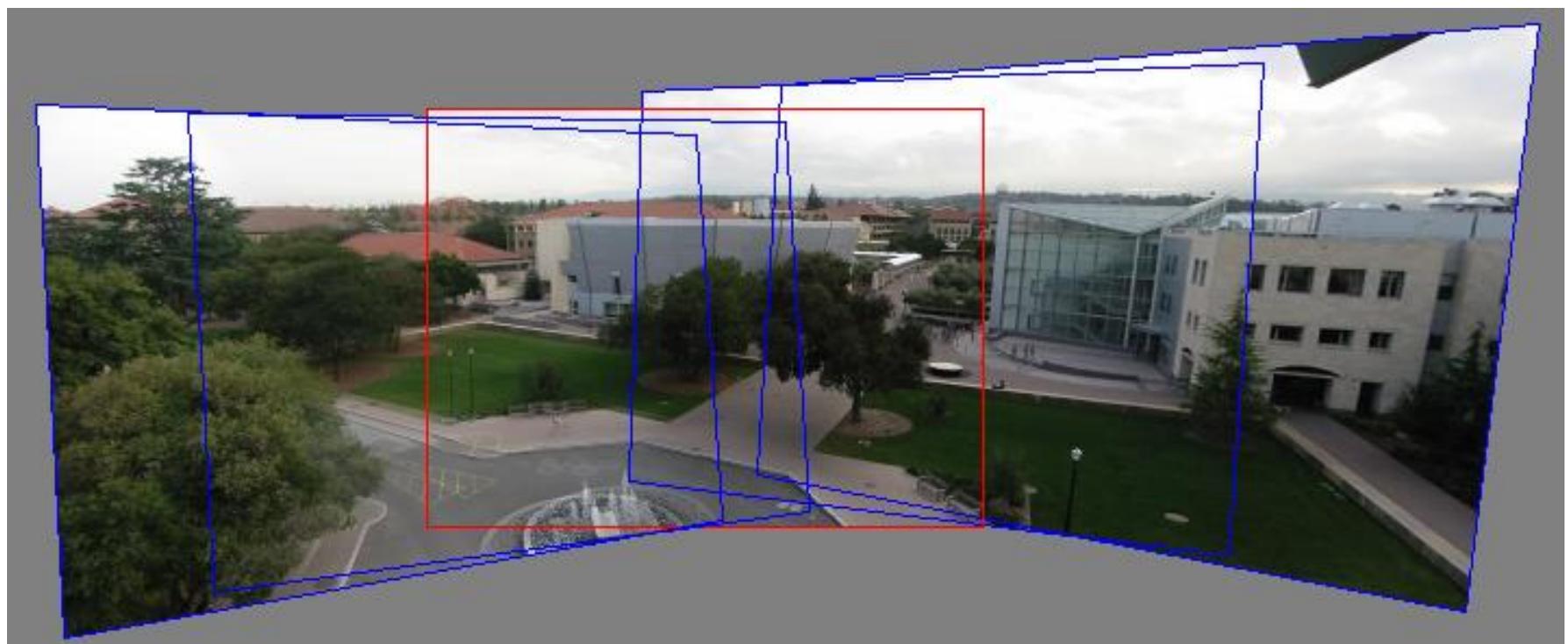
Absolute orientation

[Arun *et al.*, PAMI 1987] [Horn *et al.*, JOSA A 1988]
Procrustes Algorithm [Golub & VanLoan]

Given two sets of matching points, compute R

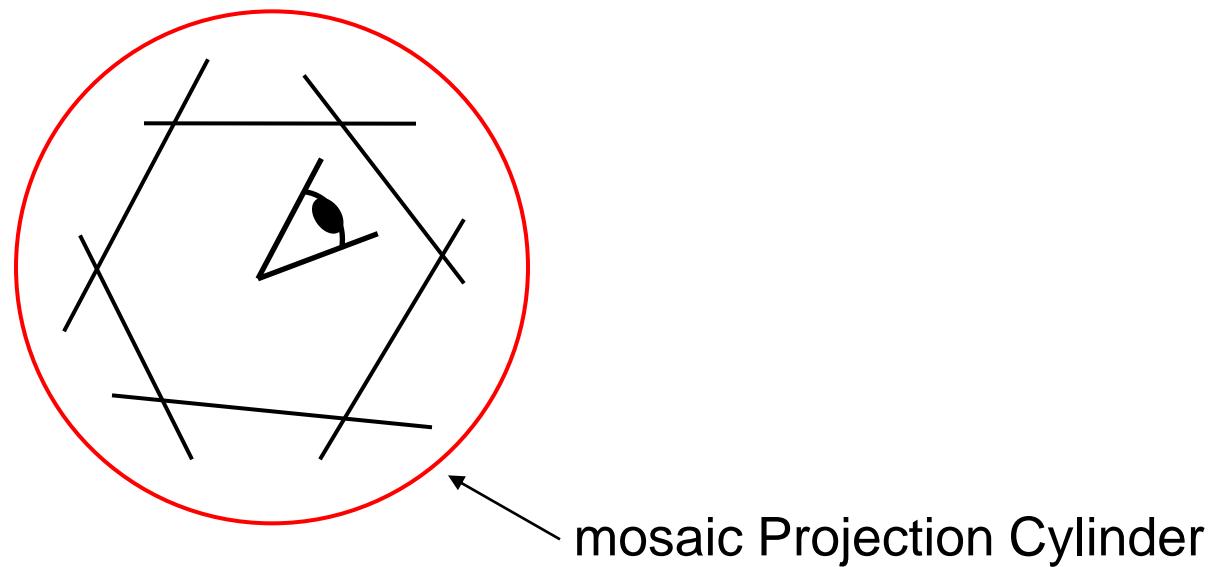
- $p_i' = \mathbf{R} p_i$ 3D rays
- $\mathbf{A} = \Sigma_{\mathbf{i}} p_i p_i'^T = \Sigma_{\mathbf{i}} p_i p_i^T \mathbf{R}^T = \mathbf{U} \mathbf{S} \mathbf{V}^T = (\mathbf{U} \mathbf{S} \mathbf{U}^T) \mathbf{R}^T$
- $\mathbf{V}^T = \mathbf{U}^T \mathbf{R}^T$
- $\mathbf{R} = \mathbf{V} \mathbf{U}^T$

Stitching demo

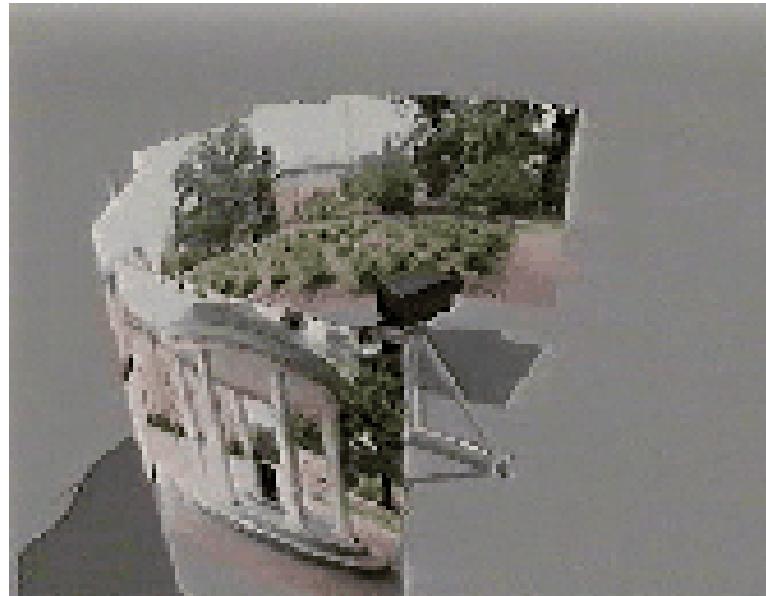


Panoramas

- What if you want a 360° field of view?



Cylindrical panoramas



- Steps
 - Reproject each image onto a cylinder
 - Blend
 - Output the resulting mosaic

Cylindrical Panoramas

- Map image to cylindrical or spherical coordinates
 - need *known* focal length

CS 6550

Image 384x300

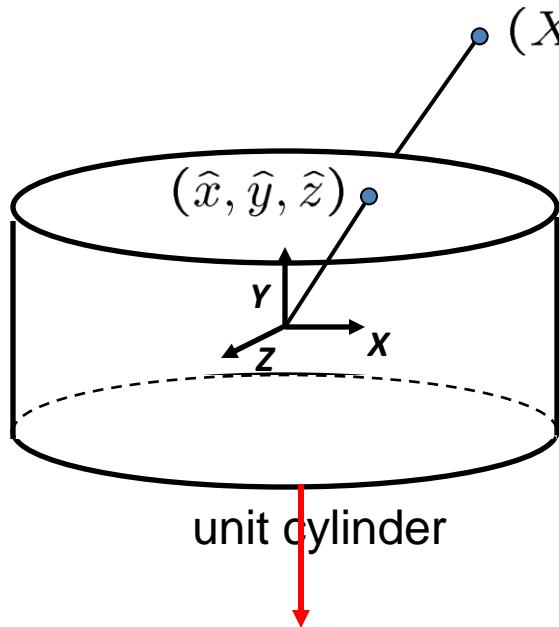
$f = 180$ (pixels)

$f = 280$

$f = 380$

Szeliski

Cylindrical projection



(X, Y, Z) – Map 3D point (X, Y, Z) onto cylinder

$$(\hat{x}, \hat{y}, \hat{z}) = \frac{1}{\sqrt{X^2+Z^2}}(X, Y, Z)$$

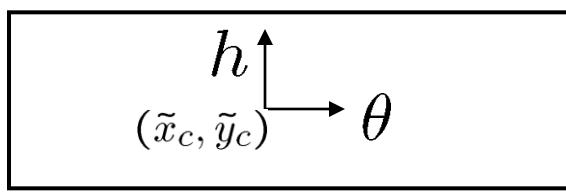
- Convert to cylindrical coordinates

$$(\sin\theta, h, \cos\theta) = (\hat{x}, \hat{y}, \hat{z})$$

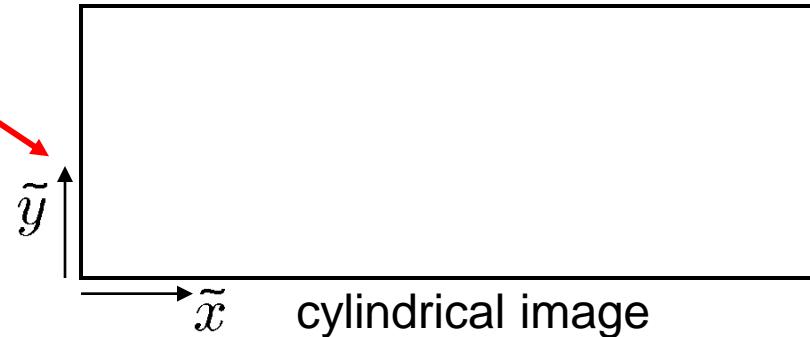
- Convert to cylindrical image coordinates

$$(\tilde{x}, \tilde{y}) = (s\theta, sh) + (\tilde{x}_c, \tilde{y}_c)$$

– s defines size of the final image



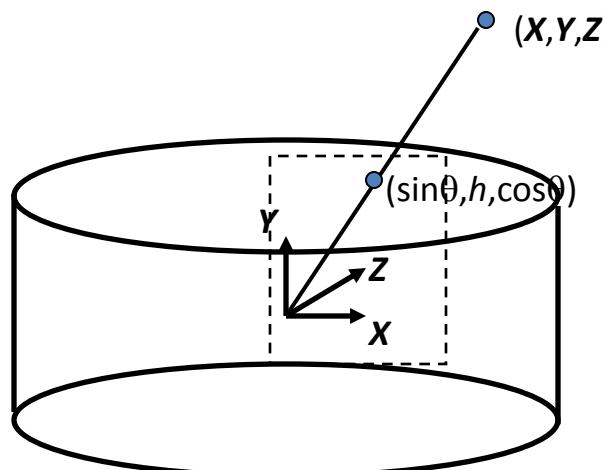
unwrapped cylinder



cylindrical image

Cylindrical warping

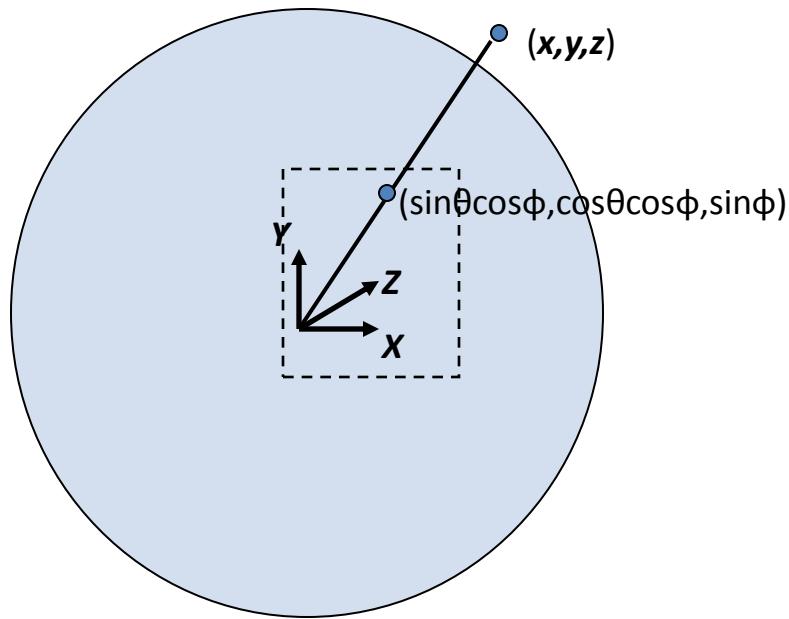
- Given focal length f and image center (x_c, y_c)



$$\begin{aligned}\theta &= (x_{cyl} - x_c) / f \\ h &= (y_{cyl} - y_c) / f \\ \hat{x} &= \sin \theta \\ \hat{y} &= h \\ \hat{z} &= \cos \theta \\ x &= f\hat{x}/\hat{z} + x_c \\ y &= f\hat{y}/\hat{z} + y_c\end{aligned}$$

Spherical warping

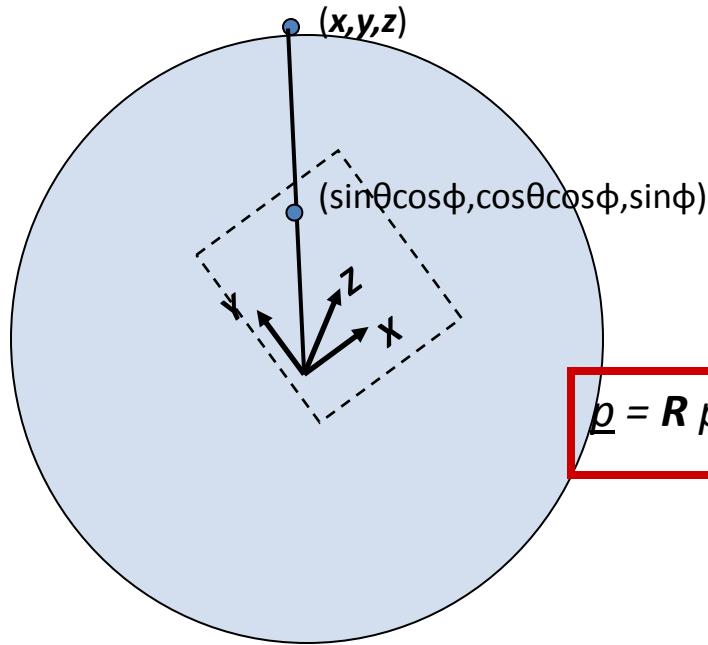
- Given focal length f and image center (x_c, y_c)



$$\begin{aligned}\theta &= (x_{cyl} - x_c)/f \\ \varphi &= (y_{cyl} - y_c)/f \\ \hat{x} &= \sin\theta \cos\varphi \\ \hat{y} &= \sin\varphi \\ \hat{z} &= \cos\theta \cos\varphi \\ x &= f\hat{x}/\hat{z} + x_c \\ y &= f\hat{y}/\hat{z} + y_c\end{aligned}$$

3D rotation

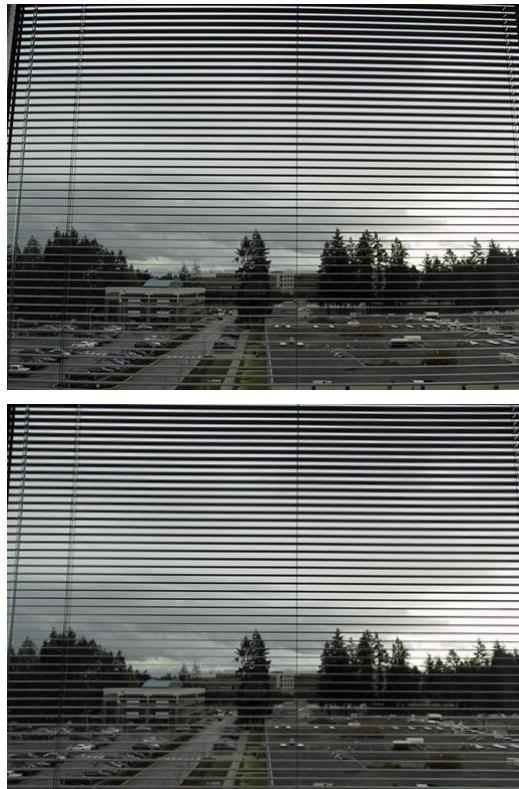
- Rotate image before placing on unrolled sphere



$$\begin{aligned}\theta &= (x_{cyl} - x_c)/f \\ \varphi &= (y_{cyl} - y_c)/f \\ \hat{x} &= \sin \theta \cos \varphi \\ \hat{y} &= \sin \varphi \\ \hat{z} &= \cos \theta \cos \varphi \\ x &= f \underline{\hat{x}} / \underline{\hat{z}} + x_c \\ y &= f \underline{\hat{y}} / \underline{\hat{z}} + y_c\end{aligned}$$

Radial distortion

- Correct for “bending” in wide field of view lenses



$$\begin{aligned}\hat{r}^2 &= \hat{x}^2 + \hat{y}^2 \\ \hat{x}' &= \hat{x}/(1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4) \\ \hat{y}' &= \hat{y}/(1 + \kappa_1 \hat{r}^2 + \kappa_2 \hat{r}^4) \\ x &= f\hat{x}'/\hat{z} + x_c \\ y &= f\hat{y}'/\hat{z} + y_c\end{aligned}$$

Fisheye lens

- Extreme “bending” in ultra-wide fields of view

$$\hat{r}^2 = \hat{x}^2 + \hat{y}^2$$

$$(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) = s (x, y, z)$$

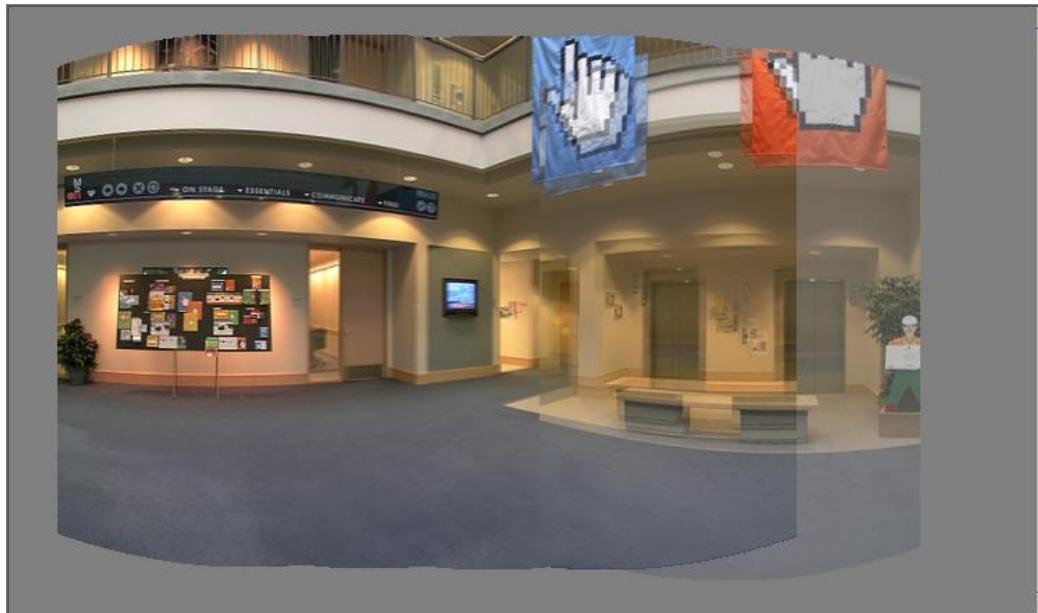
equations become

$$x' = s\phi \cos \theta = s \frac{x}{r} \tan^{-1} \frac{r}{z},$$

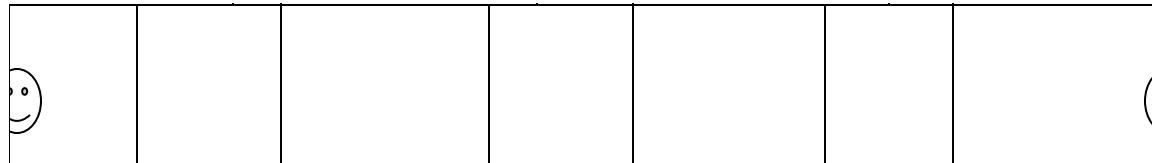
$$y' = s\phi \sin \theta = s \frac{y}{r} \tan^{-1} \frac{r}{z},$$

Image Stitching

1. Align the images over each other
 - camera pan \leftrightarrow translation on cylinder
2. Blend the images together

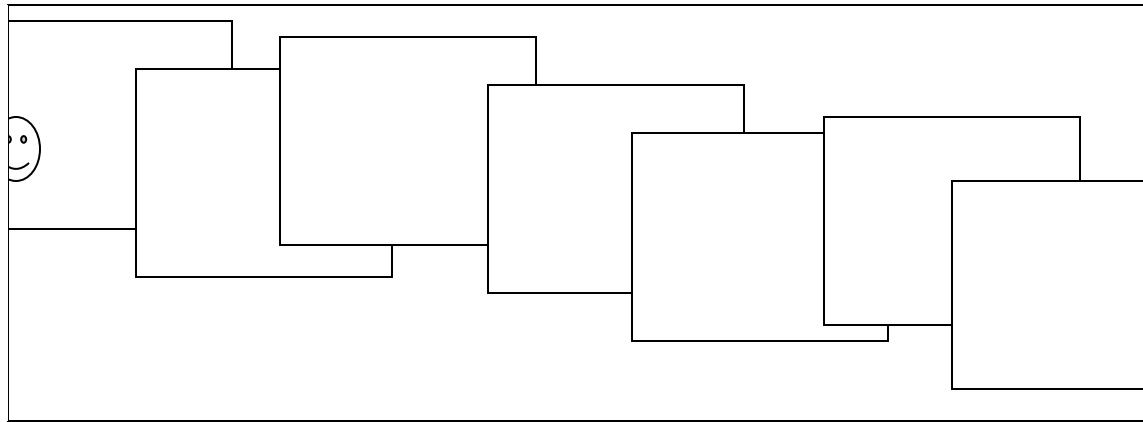


Assembling the panorama



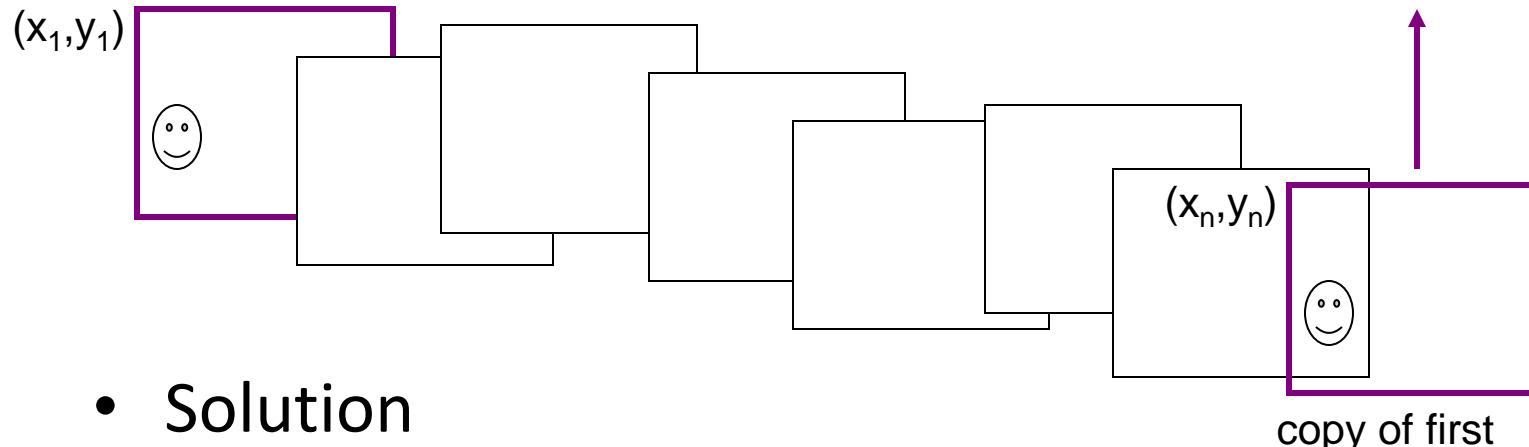
- Stitch pairs together, blend, then crop

Problem: Drift



- Error accumulation
 - small (vertical) errors accumulate over time
 - apply correction so that $\text{sum} = 0$ (for 360° pan.)

Problem: Drift



- **Solution**
 - add another copy of first image at the end^{image}
 - this gives a constraint: $y_n = y_1$
 - there are a bunch of ways to solve this problem
 - add displacement of $(y_1 - y_n)/(n - 1)$ to each image after the first
 - compute a global warp: $y' = y + ax$
 - run a big optimization problem, incorporating this constraint
 - best solution, but more complicated
 - known as “bundle adjustment”

Full-view (360° spherical) panoramas

Full-view Panorama

+

+

+

+

Global alignment

- Register *all* pairwise overlapping images
- Use a 3D rotation model (one R per image)
- Use direct alignment (patch centers) or feature based
- *Infer* overlaps based on previous matches (incremental)
- Optionally *discover* which images overlap other images using feature selection (RANSAC)

Bundle adjustment formulations

All pairs optimization:

$$E_{\text{all-pairs-2D}} = \sum_i \sum_{jk} c_{ij} c_{ik} \|\tilde{x}_{ik}(\hat{x}_{ij}; \mathbf{R}_j, f_j, \mathbf{R}_k, f_k) - \hat{x}_{ik}\|^2, \quad (9.29)$$

Map 2D point i in image j to 2D point in image k

Full bundle adjustment, using 3-D point positions $\{\mathbf{x}_i\}$

$$E_{\text{BA-2D}} = \sum_i \sum_j c_{ij} \|\tilde{x}_{ij}(\mathbf{x}_i; \mathbf{R}_j, f_j) - \hat{x}_{ij}\|^2, \quad (9.30)$$

Map 3D point i in to 2D point in image i

Bundle adjustment using 3-D ray:

$$E_{\text{BA-3D}} = \sum_i \sum_j c_{ij} \|\tilde{x}_i(\hat{x}_{ij}; \mathbf{R}_j, f_j) - \mathbf{x}_i\|^2, \quad (9.31)$$

3-D ray from point i

All-pairs 3-D ray formulation:

$$E_{\text{all-pairs-3D}} = \sum_i \sum_{jk} c_{ij} c_{ik} \|\tilde{x}_i(\hat{x}_{ij}; \mathbf{R}_j, f_j) - \tilde{x}_i(\hat{x}_{ik}; \mathbf{R}_k, f_k)\|^2. \quad (9.32)$$

3-D ray from points i and j

Summary

- Image alignment is very essential in many computer vision applications
- Selection of appropriate image transformations is very important and usually depends on the application domains.
- Image mosaicing/stitching is very common in many applications, such as panoramas, medical imaging, etc.