
Chapter 3
Digital Image Processing

CS 3570

OBJECTIVES FOR CHAPTER 3

• Know the important file types for digital image data.

• Understand the difference between fixed-length and variable-
length encoding schemes.

• Understand the application of LZW compression, Huffman
encoding, and JPEG compression.

• Understand the luminance and chrominance downsampling.

• Understand the indexed color algorithms.

• Understand the dithering algorithms.

• Understand pixel point processing in digital image processing.

• Understand how convolutions are applied in filtering for
enlarging, reducing, or sharpening images.

• Understand resampling and interpolation.

2

Digital image type

• If you take a picture with a digital camera or scan a
photograph with a digital scanner, you’ll have a choice of
file types in which to save the image.

• You’ll also have a choice of file types when you save an
image in an image processing, paint, or drawing program.

• Not all color modes can be accommodated by all file
types, and some file types require that the image be
compressed while some do not.

3

Digital image type – bitmap - 1

• Both support transparency, but BMP supported alpha
channel.

• GIF files can be saved in an interlaced format that allows
progressive download of web images. In progressive
download, a low-resolution version of an image is
downloaded first, and the image gradually comes into focus
as the rest of the data is downloaded.

File Suffix File Type Characteristics

.bmp Windows bitmap 1 to 24-bit color depth, 32-bit if alpha channel is used.
Can use lossless RLE or no compression. RGB or
indexed color.

.gif Graphics Interchange
Format

Used on the web. Allows 256 RGB colors. Can be used
for simple animations. Uses LZW compression.
Originally proprietary to CompuServe.

4

Digital image type – bitmap - 2

• GIF and JPG files are also widely used on the web.

• Bitmap files in indexed color mode generally use 8 bits (or
more) per pixel to store an index into a color table, called
a palette.

• Like BMP files, PNG files allow the use of the alpha channel.

• The bits in the alpha channel indicate the level of
transparency of each pixel.

File Suffix File Type Characteristics

.jpeg or

.jpg
Joint Photographic
Experts Group

For continuous tone pictures. Lossy compression. Level
of compression can be specified.

.png Portable Network
Graphics

Designed as an alternative to .gif files. Compressed
with lossless method. 1 to 64-bit color with
transparency channel.

5

Color Quantization - 1

• The process of reducing the
number of colors in an image file
is called color quantization.

• In image processing programs,
the color mode associated with
color quantization is called
indexed color.

• Indexed color is a technique to
manage digital images' colors in a
limited fashion, in order to save
computer memory and file
storage.

2
4

-b
it R

G
B

 C
o

lo
r

U
sin

g 1
6

 co
lo

rs

6

Color Quantization - 2

• Color quantization begins with an image file
stored with a bit depth of n and reduces the bit
depth to b.

• The number of colors representable in the
original file is 2n, and the number of colors
representable in the adjusted file will be 2b.

• As an example, let’s assume your image is initially
in RGB mode with 24-bit color, and you want to
reduce it to 8-bit color.

7

Process of Color Quantization - 1

• The process of color quantization
involves three steps

1. The actual range and number of
colors used in your picture must
be determined. If your image is
stored initially in RGB mode with
24-bit color, then there are 224 =
16,777,216 possible colors. The
question is, which of these colors
appear in the picture?

8

Process of Color Quantization – 2

2. The second step entails choosing 2b colors to
represent those that actually appear in the
picture. For our example, the adjusted picture
would be limited to 28 = 256 colors

9

Process of Color Quantization – 3

3. To map the colors in the original picture to the colors
chosen for the reduced bit-depth picture. The b bits
that represent each pixel then become an index into a
color table that has 2b entries, where each entry is n
bits long. In our example, the table would have 256
entries, where each entry is 24 bits long.

10

Popularity algorithm

• One simple way to achieve a reduction from a bit depth
of n to a bit depth of b.

1. The 2b colors that appear most often in the picture are
chosen for the reduced-bit depth picture

2. To map one of the original colors to the more limited
palette is by finding the color that is most similar using
the minimum mean squared distance.

 -> min (R-ri)
2+ (G-gi)

2+(B-bi)
2

11

R,G,B: original color
ri,gi,bi: quantized color

Popularity algorithm - Disadvantage

• Disadvantage: it completely throws out
colors that appear infrequently
• Example:

A picture with one dramatic
spot of red in a field of white
snow, trees, and sky may lose
the red spot entirely,
completely changing the
desired effect

 12

Uniform partitioning Algorithm – 1

1. Finding the smallest “box” that contains all
the colors appearing in the image

2. Divide the subspace containing the existing
colors into 2b blocks of equal size

13

Smallest box in RGB 3D space

Uniform partitioning for index color

• Example: the color space partitioned uniformly giving
eight values of red, eight of green, and four of blue.

 Range of Reds in the Original
Image (decimal values)

Range of Red in the Original
Image (binary values)

Index to Which They
Map in the Color Table

 0–31 00000000–00011111 0

 32–63 00100000–00111111 1

 64–95 01000000–01011111 2

 96–127 01100000–01111111 3

128–159 10000000–10011111 4

160–191 10100000–10111111 5

192–223 11000000–11011111 6

224–255 11100000–11111111 7

14

Uniform partitioning Algorithm -
disadvantage

• It does not account for the fact that the equal-
sized partitions of the color space may not be
equally populated. There may be many colors in
one partition, and only a few in another. All the
colors in a heavily populated partition will be
converted to a single color, and smooth
transitions of color will be lost in the image.

15

Median-cut algorithm - 1

• The median-cut algorithm is superior to uniform
partitioning in that it does a better balancing of the
number of colors in a partition.

1. To reduce the RGB color space to the smallest block
containing all the colors in the image.

2. The algorithm proceeds by a stepwise partitioning
where at each step some sub-block containing
2n = c colors is divided in half along its longest
dimension such that c/2 of the existing colors from
the image are in one half and c/2 are in the other.

16

Median-cut algorithm - 2

17

Median-cut algorithm - 3

18

Median-cut algorithm - 4

19

Median-cut algorithm - 5

20

Median-cut algorithm - 6

21

Median-cut algorithm - 7

22

Median-cut algorithm - 8

Median-cut Algorithm

Color_quantization(Image, n){
 For each pixel in Image with color C, map C in RGB space;
 B = {RGB space};
 While (n-- > 0) {
 L = Heaviest (B);
 Split L into L1 and L2;
 Remove L from B, and add L1 and L2 instead;
 }
 For all boxes in B do
 assign a representative (color centroid);
 For each pixel in Image do
 map to one of the representatives;
}

23

Octree algorithm - 1

• The octree algorithm is similar to the median-cut
algorithm in that it partitions the color space with
attention to color population

1. determining the colors to use in the reduced-bit
depth image

2. converting the original image to fewer colors on
the basis of the chosen color table

24

Octree algorithm - 2

25

• Example: reduce 24-bit to 8-bit

• Insert first pixel([220 81 131])
into octree

• R: 11011100

• G: 01010001

• B: 10000011

Octree algorithm - 3

26

• The nodes are recorded with
the times they are visited

• The lower the level, the more
similar to the original color

Octree algorithm - 4

• This yields a maximum of 88 leaf nodes.
(Note that 88 = 224) However, only 2b leaf
nodes are actually created. If processing a
pixel results in the creation of a leaf node
2b + 1, some nodes need to be combined

• A reducible node
one that has at least two children

must be found at the lowest possible level

27

Octree algorithm - 5

28

• If we have more than 256 leaf nodes…

• Branch ‘001’ at level 7 has 3 children
nodes. => Simply delete its children
nodes.

• Then we can compute the weighted
average color of BCD for A Level 7 A

B C D

Octree algorithm - Advantage

• Use the image’s original colors if possible.

• Average similar colors when this is not
possible.

• It is also efficient in its implementation,
since the tree never grows beyond a depth
of eight.

29

Dithering - 1

• Dithering is a technique for simulating colors that
are unavailable in a palette by using available
colors that are blended by the eye so that they
look like the desired colors

• Dithering is helpful when you change an image
from RGB mode to indexed color because it
makes it possible to reduce the bit depth of the
image, and thus the file size, without greatly
changing the appearance of the original image

30

Thresholding

• If you have a grayscale image
that uses eight bits per pixel
and decide to reduce it to a
black and white bitmap that
uses one bit per pixel.

• A sensible algorithm to
accomplish this would change
pixel values less than 128 to
black and values greater than
or equal to 128 to white.

• This is called thresholding.

O
rigin

 im
age

A

fter th
resh

o
ld

in
g

31

Noise dithering - 1

• Also called random dithering

1. Generate a random number from 0 to 255

2. If the pixel’s color value is greater than the
number then it is white, otherwise black

3. Repeat step 2 for each pixel in the image

• Crude and “noisy”

32

Noise dithering - 2

33

Average dithering - 1

1. Calculate an average pixel value

2. If each pixel is above this then white, else
black

3. Repeat step 2 for each pixel in the image

• Crude and “contrasty”

34

Average dithering - 2

35

Pattern dithering - 1

• Also called ordered dithering,
Bayer method

1. Break the image into small
blocks

2. Define a threshold matrix
• Use a different threshold for each

pixel of the block
• Compare each pixel to its own

threshold

• Widely used by the printing
industry - rare in multimedia

Image Block

Threshold matrix

Result

















128128128

128192192

128192255

















5015010

200150220

100250200

















101

010

101

36

Pattern dithering - 2

37

Error Diffusion Dithering - 1

• Also called Floyd-Steinberg algorithm

• Disperses the error, or difference
between a pixel’s original value and the
color (or grayscale) value available

38

Error Diffusion Dithering - 2

1. Define the mask, for example:

2. For each pixel p

1. Define e: if p<128, e = p; otherwise e = p-255

2. Change the value of neighbor pixel

• When the mask is moved to the right by one
pixel, the next step will operate on a pixel that
has possibly been changed in a previous step

p 7

3 5 1

(x,y) (x+1,y)

(x-1,y+1) (x,y+1) (x+1,y+1)

p(x+1,y) = p(x+1,y)+(7/16)e
p(x-1,y+1) = p(x-1,y+1)+(3/16)e
p(x,y+1) = p(x,y+1)+(5/16)e
p(x+1,y+1) = p(x+1,y+1)+(1/16)e

(7/16)e

(1/16)e (3/16)e (5/16)e

39

Error Diffusion Dithering - 3

• After the error has been distributed over the whole
image, the pixels are processed a second time. This time
for each pixel, if the pixel value is less than 128, it is
changed to a 0 in the dithered image. Otherwise it is
changed to a 1.

40

After dithering

Image transform - 1

• You want to create an effect on an image

• You want your image to be as clear and detailed as possible

• you want to provoke a certain mood or alter colors and
shading that affect the aesthetics of the image

• you want to change the focus or emphasis

→An image transform:
a process of changing the color or grayscale
values of image pixels

41

Image transform - 2

• Image transforms can be divided into two types

• Pixel point processing
a pixel value is changed based only on its original
value, without reference to surrounding pixels

• Spatial filtering
changes a pixel’s value based on the values of
neighboring pixels

42

Histogram - 1

• A histogram is a discrete function that describes
frequency distribution; that is, it maps a range of
discrete values to the number of instances of
each value in a group of numbers.

• Let vi be the number of instances of value i in the
set of numbers. Let min be the minimum
allowable value of i, and let max be the maximum.
Then the histogram function is defined as

 h(i) = vi for min ≤ i ≤ max.

43

Histogram - 2

• Simple histogram
a group of 32 students identified by class (1 for freshman,
2 for sophomore, 3 for junior, and 4 for senior)

• There are ten freshmen, six sophomores, five juniors, and 11 seniors

44

Histogram - 3

• An image histogram maps pixel values to the
number of instances of each value in the image

45

Histogram - 4

•

A large standard deviation implies that
most of the pixel values are relatively far
from the average, so the values are pretty
well spread out over the possible range

46

Luminance histogram

• Some scanners or image processing programs
give you access to a luminance histogram (also
called a luminosity histogram) corresponding to a
color image

L = 0.299R+0.587G+0.114B

• Among the three color channels, the human eye
is most sensitive to green and least sensitive to
blue

47

Histogram - 5

 A histogram that can
be manipulated to
adjust brightness
and contrast (from
Photoshop)

Histogram of image
after contrast
adjustment (from
Photoshop)

48

Transform function

• In programs like Photoshop and GIMP, the Curves
feature allows you to think of the changes you make
to pixel values as a transform function

• We define a transform as a function that changes
pixel values

g(x, y) = T(f(x, y)) , p2=T(p1)
• f(x, y) is the pixel value at that position (x, y) in the original

image. Abbreviate f(x,y) as p1

• T is the transformation function

• g(x, y) is the transformed pixel value. Abbreviate f(x,y) as
p2

49

Curves - 1

a) The transform doesn’t change the pixel values. The output
equals the input.

b) The transform lightens all the pixels in the image by a
constant amount.

c) The transform darkens all the pixels in the image by a
constant amount.

50

Curves - 2

d) The transform inverts the image, reversing dark pixels for
light ones.

e) The transform is a threshold function, which makes all the
pixels either black or white. A pixel with a value below 128
becomes black, and all the rest become white.

f) The transform increases contrast. Darks become darker and
lights become lighter.

51

Apply curves

• Adjusting contrast and brightness with curves function

52

Gamma transform - 1

•

53

s

Gamma transform - 2

54

Gamma transform - 3

55

Gamma transform - 4

56

Filter

• A filter is an operation performed on digital
image data to sharpen, smooth, or enhance some
feature, or in some other way modify the image

• Filtering in the frequency domain is performed
on image data that is represented in terms of its
frequency components

• Filtering in the spatial domain is performed on
image data in the form of the pixel’s color values

57

Convolution - 1

• Spatial filtering is done by a
mathematical operation
called convolution, where
each output pixel is
computed as a weighted sum
of neighboring input pixels

• Convolution is based on a
matrix of coefficients called a
convolution mask. The mask
is also sometimes called a
filter.

58

Convolution - 2

•

59

Convolution for averaging pixels

60

Handling edges in convolution

61

Gaussian blur

• An alternative for smoothing is to use a Gaussian
blur, where the coefficients in the convolution
mask get smaller as you move away from the
center of the mask

62

An edge-detection filter

• The filter detects
the edge, making
that edge white
while everything
else is black

63

Unsharp mask

• The name is misleading because this filter actually
sharpens images

• The pixel values in the original image are doubled, and the
blurred version of the image is subtracted from this

64

Resampling - 1

• Resampling is a process of changing the total
number of pixels in a digital image

• To understand these, you need to understand the
relationship between resolution, the size of an
image in pixels, and print size

• Here are four scenarios where you might want to
change the print size, resolution, or total pixel
dimensions of a digital image. See if you can tell
which require resampling:

65

Scenarios - 1

1) You scanned in an 8 × 10 inch photograph at a high
resolution (300 pixels per inch, abbreviated ppi).
You realize that you don’t need this resolution since
your printer can’t print in that much detail anyway.
You decide to decrease the resolution, but you don’t
want to change the size of the photograph when it
is printed out. If you want your image processing
program to change the image size from 8 × 10
inches and 300 ppi to 8 × 10 inches and 200 ppi,
does the image have to be resampled?

66

Scenarios - 2

2) You scanned in a 4 × 5 inch image at a resolution
of 72 ppi, and it has been imported into your
image processing program with these
dimensions. You’re going to display it on a
computer monitor that has 90 ppi, and you don’t
want the image to be any smaller than 4 × 5 on
the display. Does the image have to be
resampled?

67

Scenarios - 3

3) You scanned in an 8 × 10 inch photograph at 200
ppi, and it has been imported into your image
processing program with these dimensions. You
want to print it out at a size of 4 × 5 inches. Does
the image have to be resampled?

68

Scenarios - 4

4) You click on an image on your computer display
to zoom in closer. Does the image have to be
resampled?

69

Resampling - 2

• The key point to understand is that resampling is
required whenever the number of pixels in a
digital image is changed

• If the resolution—the ppi—is not changed but the
print size is, resampling is necessary

• Resampling is also required if the print size is not
changed but the resolution is

70

Scenarios - 1

The image has to be resampled in this case. If
you have 300 ppi and an image that is 8 × 10
inches, you have a total of 300 * 8 * 10 =
24,000 pixels. You want 200 * 8 * 10 = 16,000
pixels. Some pixels have to be discarded, which
is called downsampling

71

Scenarios - 2

The image has to be resampled. The 4 × 5 image
scanned at 72 ppi has pixel dimensions of 288 × 360.
A computer display that can fit 90 pixels in every
inch (in both the horizontal and vertical directions)
will display this image at a size of 3.2 × 4 inches.
Retaining a size of at least 4 × 5 inches on the
computer display requires upsampling, a process of
inserting additional samples into an image.

72

Scenarios - 3

• The image doesn’t have to be, although you can
re-sample if you choose to.

• Without downsampling, ppi will be greater.

• With downsampling, ppi remains the same.

73

Scenarios - 4

When you zoom in, the image is being upsampled,
but only for display purposes. When you zoom
out, the image is being downsampled.

74

Replication - 1

• The simplest method for upsampling is replication, a
process of inserting pixels and giving them the color
value of a neighboring pre-existing pixel

• Replication works only if you are enlarging an image
by an integer factor

75

Replication - 2

• Since the new pixel values are copied from
neighboring pixels, replication causes blockiness in
the resampled image

• Of course there is no harm done to the file, since the
pixel values are upsampled only for display purposes.
The values stored in the image file don’t change

Image resampled as you
zoom in

76

Row-column deletion

• The simplest method of downsampling
is row-column deletion, the inverse of
replication

• Row-column deletion throws away
information about the image, so you
obviously lose detail

77

Interpolation

• There are interpolation methods for resampling
that give better results than simple replication or
discarding of pixels

• Interpolation is a process of estimating the color
of a pixel based on the colors of neighboring
pixels

• Nearest neighbor

• Bilinear

• Bicubic

78

The first two steps in resampling - 1

79

The first two steps in resampling - 2

80

Nearest neighbor interpolation

• Nearest neighbor interpolation simply rounds
down to find one close pixel whose value is used
for fs(i, j)

81

Bilinear interpolation

• Bilinear interpolation uses four neighbors and makes fs(i,
j) a weighted sum of their color values. The contribution
of each pixel toward the color of fs(i, j) is a function of
how close the pixel’s coordinates are to (a, b).

82

Bilinear interpolation

•

83

Bicubic interpolation

• Bicubic interpolation uses a neighborhood of
sixteen pixels to determine the value of fs(i, j)

84

4x4 convolution mask

LZW compression

• LZW compression is a method that is applicable
to both text and image compression. It is a
lossless compression.

• The method is commonly applied to GIF and TIFF
image files

• The LZW algorithm is based on the observation
that sequences of color in an image file (or
sequences of characters in a text file) are often
repeated

85

LZW compression - example

• The code table is initialized
to contain all the individual
colors existing in the image.

• If the pixel sequence is
already in the code table,
the window is successively
expanded by one pixel until
finally a color sequence not
in the table is under the
window.

• The full code table does not
have to be stored with the
compressed file; only the
original colors in the image
is needed.

86

LZW compression - example

87

• The code table is initialized
to contain all the individual
colors existing in the image.

• If the pixel sequence is
already in the code table,
the window is successively
expanded by one pixel until
finally a color sequence not
in the table is under the
window.

• The full code table does not
have to be stored with the
compressed file; only the
original colors in the image
is needed.

LZW compression algorithm
/*Input: A bitmap image.
Output: A table of the individual colors in the image
and a compressed version of the file.
Note that + is concatenation.*/
{
 initialize table to contain the individual colors in bitmap
 pixelString = first pixel value
 while there are still pixels to process {
 pixel = next pixel value
 stringSoFar = pixelString + pixel
 if stringSoFar is in the table then
 pixelString = stringSoFar
 else {
 output the code for pixelString
 add stringSoFar to the table
 pixelString = pixel
 }
 }
 output the code for pixelString
} 88

Huffman encoding

• Huffman encoding is another lossless compression
algorithm that is used on bitmap image files.

• It differs from LZW in that it is a variable-length
encoding scheme; that is, not all color codes use the
same number of bits.

• The Huffman encoding algorithm requires two passes:

1) determining the codes for the colors

2) compressing the image file by replacing each color with
its code

89

Huffman encoding - example

• The image file has only 729 pixels in it, with the
following colors and the corresponding frequencies

• White 70

• Black 50

• Red 130

• Green 234

• Blue 245

• A node is created for each of the colors in the image,
with the frequency of that color’s appearance stored
in the node

 90

Huffman encoding - example

• Now the two nodes with the
smallest value for freq are joined
such that they are the children of
a common parent node, and the
parent node’s freq value is set to
the sum of the freq values in the
children nodes

• This node-combining process
repeats until you arrive at the
creation of a root node

91

Huffman encoding - example

• Once the tree
has been created,
the branches are
labeled with 0s
on the left and 1s
on the right

92

Huffman encoding - example

• After the codes have been
created, the image file can
be compressed using these
codes

• Input: wwwkkwwbgr (k:black)

• Encoding:
000000000001001000000111001

93

Huffman encoding

• By combining least-valued nodes first and
creating the tree from the bottom up, the
algorithm ensures that the colors that appear
least frequently in the image have the longest
codes

• Also, because the codes are created from the tree
data structure, no code can be a prefix of another
code

• Huffman encoding is useful as a step in JPEG
compression, as we will see in the next section.

94

JPEG Compression

• JPEG is a lossy compression method

• Image processing programs allow you to choose
the JPEG compression rate

• The main disadvantage to JPEG compression is
that it takes longer for the encoding and decoding
than other algorithms require

95

JPEG Compression – step1

• Step1 : Divide the image into 8 × 8 pixel blocks
and convert RGB to a luminance/chrominance
color model

• The image is divided into 8 × 8 pixel blocks to
make it computationally more manageable for
the next steps. Converting color to a
luminance/chrominance model makes it possible
to remove some of the chrominance information,
to which the human eye is less sensitive, without
significant loss of quality in the image.

96

JPEG Compression – step2

• Step 2: Shift values by –128 and transform from the
spatial to the frequency domain

• On an intuitive level, shifting the values by –128 is like
looking at the image function as a waveform that cycles
through positive and negative values. This step is a
preparation for representing the function in terms of its
frequency components. Transforming from the spatial to
the frequency domain makes it possible to remove high
frequency components. High frequency components are
present if color values go up and down quickly in a small
space. These small changes are barely perceptible in most
people’s vision, so removing them does not compromise
image quality significantly.

97

JPEG Compression – step2

Grayscale Values for 8 × 8 Pixel Area

222 231 229 224 216 213 220 224

216 229 217 215 221 210 209 223

211 202 283 198 218 207 209 221

214 180 164 188 203 193 205 217

209 171 166 190 190 178 199 215

206 177 166 179 180 178 199 210

212 197 173 166 179 198 206 203

208 208 195 174 184 210 214 206

Pixel Values for Image in Figure 3.49 Shifted by –128

94 103 101 96 88 85 92 96

88 101 89 87 93 82 81 95

83 74 55 70 90 79 81 93

86 52 36 60 75 65 77 89

81 43 38 62 62 50 71 87

78 49 38 51 52 50 71 82

84 69 45 38 51 70 78 75

80 80 67 46 56 82 86 78

98

JPEG Compression – step2

DCT of an 8 × 8 Pixel Area

585.7500 –24.5397 59.5959 21.0853 25.7500 –2.2393 –8.9907 1.8239

 78.1982 12.4534 –32.6034 –19.4953 10.7193 –10.5910 –5.1086 –0.5523

 57.1373 24.829 –7.5355 –13.3367 –45.0612 –10.0027 4.9142 –2.4993

–11.8655 6.9798 3.8993 –14.4061 8.5967 12.9151 –0.3122 –0.1844

 5.2500 –1.7212 –1.0824 –3.2106 1.2500 9.3595 2.6131 1.1199

 –5.9658 –4.0865 7.6451 13.0616 –1.1927 1.1782 –1.0733 –0.5631

 –1.2074 –5.7729 –2.0858 –1.9347 1.6173 2.6671 –0.4645 0.6144

 0.6362 –1.4059 –0.719 1.6339 –0.1438 0.2755 –0.0268 –0.2255

99

JPEG Compression – step3

• Step 3: Quantize the frequency values

• Quantization involves dividing each frequency
coefficient by an integer and rounding off. The
coefficients for high-frequency components are
typically small, so they often round down to 0—
which means, in effect, that they are thrown
away

100

JPEG Compression – step3

Quantization Table

 8 6 6 7 6 5 8 7

 7 7 9 9 8 10 12 20

13 12 11 11 12 25 18 19

15 20 29 26 31 30 29 26

28 28 32 36 46 39 32 34

44 35 28 28 40 55 41 44

48 49 52 52 52 31 39 57

61 56 50 60 46 51 52 50

Quantized DCT Values

73 –4 10 3 4 0 –1 0

11 2 –4 –2 1 –1 0 0

 4 2 –1 –1 –4 0 0 0

–1 0 0 –1 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

101

JPEG Compression – step4

• Step 4: Apply DPCM to the block

• DPCM is the abbreviation for differential pulse
code modulation. In this context, DCPM is simply
storing the difference between the first value in
the previous 8 × 8 block and the first value in the
current block. Since the difference is generally
smaller than the actual value, this step adds to
the compression.

102

JPEG Compression – step5

• Step 5: Arrange the values in a zigzag order and
do run-length encoding.

• The zigzag reordering sorts the values from low-
frequency to high-frequency components. The
high-frequency coefficients are grouped together
at the end. If many of them round to zero after
quantization, run-length encoding is even more
effective.

103

JPEG Compression – step5

• Quantized DCT values rearranged from low- to
high-frequency components

• Zigzag order

104

high frequency

high frequency

JPEG Compression – step6

• Step 6: Do entropy encoding.

• Additional compression can be achieved with
some kind of entropy encoding.

• In JPEG, Huffman coding is used.

105

JPEG Compression Algorithm

algorithm jpeg
/*Input: A bitmap image in RGB mode.
Output: The same image, compressed.*/
{
 Divide image into 8 × 8 pixel blocks
 Convert image to a luminance/chrominance model such as YCbCr (optional)
 Shift pixel values by subtracting 128
 Use discrete cosine transform to transform the pixel data from the spatial domain
 to the frequency domain
 Quantize frequency values
 Store DC value (upper left corner) as the difference between current DC value and
 DC from previous block
 Arrange the block in a zigzag order
 Do run-length encoding
 Do entropy encoding (e.g., Huffman)
}

106

RGB  YCbCr

• YCbCr color model represents color in terms of one
luminance component, Y, and two chrominance
components, Cb and Cr.

• The human eye is more sensitive to changes in light (i.e.,
luminance) than in color (i.e., chrominance).

107







































































B

G

R

C

C

Y

r

b

071.0368.0439.0

439.0291.0148.0

098.0504.0257.0

128

128

16









































































128

128

16

0017.2164.1

439.0392.0164.1

596.10164.1

r

b

C

C

Y

B

G

R

Chrominance subsampling

• luminance/chrominance subsampling is represented in
the form a:b:c

• For each pair of four-pixel-wide rows, a is the number of
Y samples in both rows, b and c are the numbers of Cb (Cr)
samples in the 1st and 2nd rows, respectively.

108

4:2:0 Chroma subsampling

109

110

JPEG Image Compression

8X8 DCT Bases

111

 u


 v

DCT
coefficients

Image

Inverse DCT

http://en.wikipedia.org/wiki/File:Dctjpeg.png

112

Transform Coding

113

Threshold Coding Using Normalization Matrix

Threshold coding quantization curve Normalization matrix Z

),(

),(
),(ˆ

vuZ

vuT
vuT




114

Examples of Transform Coding

Image Compression Error (Distortion)

115

Compression Error

Reconstructed image

Original Image

Quantization using Z 4Z

116

Quantization Tables in JPEG

