Chapter 4
Digital Audio Representation
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Objectives

e Be able to apply the Nyquist theorem to understand
digital audio aliasing.

e Understand how dithering and noise shaping are done.

e Understand the algorithm and mathematics for p-law
encoding.

e Understand the application and implementation of the
Fourier transform for digital audio processing.

e Understand what MIDI is and the difference between
MIDI and digital audio wave.
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Introduction

e Sound is a mechanical wave that is an oscillation of
pressure transmitted through a solid, liquid, or gas.

 The perception of sound in any organism is limited to
a certain range of frequencies(20Hz~20000Hz for
humans).

e How do we process “sound”?

The changing air pressure caused by sound is translated
into changing voltages.

The fluctuating pressure can be modeled as continuously
changing numbers—a function where time is the input
variable and amplitude (of air pressure or voltage) is the
output.
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Pulse Code Modulation

e Pulse-code modulation (PCM) is a method used to
digitally represent sampled analog signals.

e A PCM stream is a digital representation of an analog
signal, in which the magnitude of the analogue signal
is sampled regularly at uniform intervals, with each
sample being quantized to the nearest value within a
range of digital steps.

e PCM files are digitized but not compressed.
e DPCM (Differential Pulse Code Modulation)
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Audio Digitization

e When you create a new audio file in a digital audio

processing program, you are asked to choose
Sampling rate: The sampling rate, sample rate, or sampling
frequency defines the number of samples per unit of time

(usually seconds) taken from a continuous signal to make a
discrete signal.

Bit depth: Bit depth describes the number of bits of
information recorded for each sample.

e For CD quality, the sampling rate is 44.1kHz and the
bit depth is 16.
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Audio Digitization

* Create a new audio file (Adobe Audition)
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Audio Digitization

e Extract music from CDs

Media Guide

#=HF 3 Windows Media Audio
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-« Sampling rate and bit depth are fixed.
* You can choose your desired bit rate (MP3 compression)
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Nyquist Theorem

e Review

Let f be the frequency of a sine wave. Let r be the
minimum sampling rate that can be used in the
digitization process such that the resulting
digitized wave is not aliased. Then r=2f.
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Nyquist Theorem

* Nyquist frequency

Given a sampling rate, the Nyquist frequency is
the highest actual frequency component that can
be sampled without aliasing.

EX:
If we choose a sample rate of 8000Hz, the Nyquist

frequency f,r = %fgamp = 4000Hz
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Nyquist Theorem

* Nyquist rate

Given an actual frequency to be sampled,
the Nyquist rate is the lowest sampling rate that
will permit accurate reconstruction of an analog
digital signal.

Ex:

If the highest frequency component is 10,000Hz,
the Nyquist rate f,,, = 2f;,0x = 20,000Hz
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Sampling Rate and Aliasing

e [n essence, the reason a too-low sampling rate
results in aliasing is that there aren’t enough sample
points from which to accurately interpolate the
sinusoidal form of the original wave.

1.5

1.0F

0.5
()4
o5k Samples taken more than twice per cycle

will provide sufficient information to
reproduced the wave with no aliasing
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Sampling Rate and Aliasing
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Samples taken exactly twice per cycle can be
sufficient for digitizing the original with no aliasing
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Decibels

e Decibels(Eo, lo: threshold of human hearing)

Decibels-sound-pressure-level (dB_SPL)

dB_SPL = 20logo (=), Eo = 2 X 10~°Pa
0

Decibels-sound-intensity-level (dB_SIL)
dB_SIL = 10log;o (), Iy = 1072W /m?

I
e Decibels can be used to measure many things in
physics, optics, electronics, and signal processing.

e A decibel is not an absolute unit of measurement.
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Dynamic Range

e Dynamic range is the ratio between the smallest nonzero
value, which is 1, and the largest, which is 27",
The dynamic range of the audio file, d, in decibels, is
defined as

d = 20log,p 2" = 20nlog,p2 = 61

e The definition is identical to the definition of SQNR, and
this is why you see the terms SQNR and dynamic range
sometimes used interchangeably.

e Be careful not to interpret this to mean that a 16-bit file
allows louder amplitudes than an 8-bit file. Rather,
dynamic range gives you a measure of the range of
amplitudes that can be captured relative to the loss of
fidelity compared to the original sound.
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Audio Dithering

e Audio dithering is a way to compensate for quantization error.

e Quantized signals would sound ‘granular’ because of the stair-
step effect. The quantized signals sound like the original

signals plus the noise.

e The noise follows the same pattern as the original wave,
human ear mistakes it as the original signal.

Sine wave
------- (Quantized sine wave
——— Error wave
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Audio Dithering

e Examplel-simpe wave

Original wave

After bit reduction

After dithering

i
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Audio Dithering

 Adding a random noise(dither) to the original wave eliminates
the sharp stair-step effect in the quantized signal.

e The noise is still there, but has less effect on the original
signal.(we can hear the smooth signal without stair-step effect)

1.0

0.8 -

dithered
guantized wave

1 | L ! |
0 100 200 300 400 500
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Audio Dithering

e Dithering function

Triangular probability Triangular

density function (TPDF) probability /\

function O 0 ,

Amount to add to sample

Probability

e
-

Rectangular probability density function (RPDF): All numbers
in the selected range have the same probability

Gaussian PDF: The Gaussian PDF weights the probabilities
according to a Gaussian

Colored dithering: Colored dithering produces noise that is
not random and is primarily in higher frequencies.
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Audio Dithering

e Example2 — complex wave

Original wave

After bit reduction

After dithering
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Noise Shaping

e Noise shaping is another way to compensate for the
guantization error. Noise shaping is not dithering, but
it is often used along with dithering.

e The idea behind noise shaping is to redistribute the
guantization error so that the noise is concentrated
in the higher frequencies, where human hearing is
less sensitive, or we can use a low-pass filter to filter
out the high frequency components.

P . . Departocent n{ Clampater Secence f"ﬁ?
qmm# i"a Mﬂm 20 %fﬂ-ﬂ#ﬂf J?dl'-'-“"? ﬁ:ﬂ'ﬁ m&!ﬂr 2



Noise Shaping

e First-order feedback loop for noise shaping

Let F_in be an array of N digital audio samples that are to
be quantized, dithered, and noise shaped, yielding F_out.
For 0 <i< N -1, define the following: F_in; is the jth
sample value, not yet quantized.

D.is a random dithering value added to the ith sample.

The assignment statement F_in, = F_in, + D, + cE,_, dithers
and noise shapes the sample. Subsequently, F_out; = [F_in]
guantizes the sample.

E. is the error resulting from quantizing the ith sample
after dithering and noise shaping.

Fori=-1, E;= 0. Otherwise, E;= F_in, - F_out.
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Noise Shaping

e What does noise shaping do?

Move noise’s frequency to above the Nyquist frequency,
and filter it out. We are not losing anything we care about
in the sound.

e The term shaping is used because you can
manipulate the “shape” of the noise by manipulating
the noise shaping equations

e The general statement for an nth order noise shaper
noise shaping equation
becomes F_out,=F_in+D;+c,_E._,+c _,E_,+---

+ Ci—nE I-n*
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Noise Shaping

0.25 0.25 025
0.15F 0.15 - 0.15
o 0.10 - 0.10
i 0.05 | 0.05
0 0 0
T -0.05 | -0.05
—0.10 - —0.10 k -0.10 %
-0.15 015 - -0.15
-0.20 020k -0.20
-0.25 ; ! : _ -0.25 : ' :
0 50 100 150 200 —().250 SIO I(I)O 1;0 200 0 50 100 150 200
Quantization error wave with no dithering i i Quantization error wave with dithering

Quantization error wave with dithering and noise shaping
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Noise Shaping

* Original
e After bit reduction
* After dithering

* Dithering with noise shaping
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Non-Linear Quantization

 Nonlinear encoding, or companding, is an encoding
method that arose from the need for compression of
telephone signals across low bandwidth lines.
Companding means compression and then expansion.

e How this works?

Take a digital signal with bit depth n and requantize it
in m bits, m < n, using a nonlinear quantization method.

Transmit the signal.

Expand the signal to n bits at the receiving end.

e Why not just use linear quantization?
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Non-Linear Quantization

e Reasons for non-linear quantization

Human auditory system is perceptually non-uniform.
Humans can perceive small differences between quiet
sounds, but not for louder sounds.

Quantization error generally has more impact on low
amplitudes than on high ones, why?

0.499 -> 0, err=(0.499-0)/0.499 = 100%
126.499 -> 126, err=(126.499-126)/126.499 = 0.4%

e Use more quantization levels for low amplitude
signals and fewer quantization levels for high
amplitudes.
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u-law Function

e Let x be a sample value normalized so that -1 < x< 1.
Let sign(x) = -1 if x is negative and sign(x) = 1 otherwise. Then
the u-law function is defined by
In(1+p|x|)
In(1+u) )
In(1+255|x|)
5.5452

m(x) = sign(x)(

),for,u= 255

m(x)

= sign(x) (

1.0

* The u-law function has a logarithmic
shape. Its effect is to provide finer-
grained quantization levels at low
amplitudes compared to high. 05

0.5

_ 1 I 1
: E'l 0 0.5 0 0.5 1.0 X
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u-law Function

* u means the new quantization level, 255(8 bits) in
the North American and Japanese standards.

e Then the inverse u-law function is defined by

x| _
d(x) = sign(x) <(ﬂ T 1‘[)1 1)

_ 2561 —1
= sign(x) T , for u =255

e Let’s see some examples
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u-law Function

e Assume the original signal is quantized with bit depth of 16.

Sample Normalized | m(x) Scale to d(x) Scale back to
value value 8-bit value 16-bit value
16 16 =0.02 10.02 x 128] g 2 10.00035
32768 =2 128 * 32768]
= 0.000488 = 0.00035 =11

30037 30037 =0.9844 10.9844 x 128] 125 10.8776
32768 =125 128 * 32768

= 0.9167 = 0.8776 = 28758
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Linear vs. Non-Linear Requantization

Linear Requantization Nonlinear Companding
Original 8-bit Sample  16-bit Sample Percent  8-bit Sample 16-bit Sample Percent
16-bit After After Error After After Error
Sample Compression Decompression Compression Decompression
1-5 0 0 avg. 100% 0 0 avg. 100%
611 0 0 avg. 100% 1 6 avg. 26%
12-17 0 0 avg. 100% z 12 avg. 16%
18-24 0 0 avg. 100% 3 18 avg. 13%
25-31 0 0 avg. 100% 4 25 avg. 10%
(2 0 0 100% 15 118 7%
128 1 256 100% 25 118 7.8%
383 1 256 33% 31 364 4 9%
30,038 117 29,952 0.29% 126 30,038 0%
31,373 122 31,232 0.45% 126 30,038 4 2%
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Linear vs. Non-Linear Requantization

* Error of linear requantization * Error of non-Linear requantization
100 = 100
50 - S0
v :
&
50
=100 + 1 1 1 1 1 ! I !
| | | | | | | | | 200 4,400 600 800 1000 1200400 1600 1800 2000
2000 400 600 800 1000 1200 1400 1600 1800 2000 16-§jt sample values (not all possible valhugs shown)
16-bit sample values (not all possible values shown) 100
50
Enlargement of !1.:1,«1 AAA A a0 e
samples 0-100 VVVVVVwawu—w
_ﬁu H
—100 F
| | | | | | 1 |

|
10 20 30 40 50 60 700 80 90 100
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Frequency Analysis

e Time domain
Input: time (x-axis)
Output: amplitude(y-axis)
e A complex waveform is equal to an infinite sum of simple
sinusoidal waves, beginning with a fundamental frequency

and going through frequencies that are integer multiples of
the fundamental frequency — harmonic frequencies.

|||||||||

..........................
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e Two views for frequency analysis

Frequency Analysis

Frequency analysis view(spectrum analysis view)- common

X-axis: frequency

y-axis: magnitude of the frequency component

T X

% e
|4,096 _'_”BIackman—Harris ;l [Ex! | gy de v| 2] ”;F- ']

0

O ¢

Mono

50

-100

de -150
0

100 1,000 22,050 Hz

e

Frequency (Hz):
Decibels (dB):
FFT Bin:

Prominent Frequency: -56 dB at 269 Hz (MNote: C
FFT Size: 4,096 Slices: 1 Overlap: 75%
Blackman-Harris, Log, Mono Samples: 0 to 41,7¢
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Frequency Analysis

» Spectral view
X-axis: time, y-axis: frequency
color: magnitude of the frequency component
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The Fourier Series

e A Fourier series is a representation of a periodic
function as an infinite sum of sinusoidals:

f(t) = Ym=—_wla, cos(nwt) + b, sin(nwt)]| (4.2)

e w = 2nf: fundamental angular frequency
f: fundamental frequency(f , f (t) are different things)
a, and b, tell how much each of these component
frequencies contributes to f(t).
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The Fourier Series

e Rewrite (4.2) in a different form
_1 o0
f(t) =ay+ 2 la,, cos(nwt) + b, sin(nwt)] + z [a,,cos(nwt) + b,sin(nwt)]
n=—oo n=1
(4.3)

* a,is the DC component, which gives the average

amplitude value over one period.
T/2

1
a, = — f(t)dt
r —~T/2
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The Fourier Series

e The other terms in (4.3) are called AC components.The
coefficients of each of these frequency components are

—fT/Z f(®)cos(nwt)dt, b,, = fT/Z

T/2 T/2 f(t)sin(nwt)dt

for —o0o <n < o

e Since cos(-x)=cos(x), sin(-x)=-sin(x), (4.3) becomes
f(t) =ay+2),-4]a, cos(nwt) + b,sin(nwt)] (4.4)
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The Fourier Series

e There’s another, equivalent way of expressing the
Fourier series.
f(t) = Xp=_co Fpe™®t (4.5)
F,=a,—ib,
et = cos(nwt) + isin(nwt) ----> Euler’s formula

e Fourier transform is important in signal processing. It
decomposes the signal into different frequency
components so that we can analyze it, and do some
modification on some of them.
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Discrete Fourier Transform

e The discrete Fourier transform (DFT) operates on an

array of N audio samples, returning cosine and sine

coefficients that represent the audio data in the
frequency domain.

E, = %Zﬁ’;& fx cos (ZTI{) — Lfx Sin (27\7]{) (4.8)

—i12ntnk

_ 1ynNn-1
=y k=0 fre N

o I f(r)cos( M

)DCT, Eq(2.2)

Fw) = ZM_l\/EC(u) (2r + Dun
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Discrete Fourier Transform

* Let f, be a discrete integer function representing a
digitized audio signal in the time domain, and F, be a
discrete, complex number function representing a
digital audio signal in the frequency domain. Then
the inverse discrete Fourier transform is defined by

fr=2n=0 [an cos (ZT") + b, sin (Z’Z”‘)] (4.7)

12mtnk

— Zg:_(% F,e N

e Subscript k: signal value at time k

Subscript n: nth frequency component
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Discrete Fourier Transform

e The DC component, a,, is defined by a, = —Z fk,
giving the average amplitude.
e The AC components are, for 1<n<N,

~YNZE frcos(o)
= YN fresin(r)
1

e Fundamental frequency f = ~

e Fundamental angular frequency w = 2nf = 2n/N
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How does DFT Work?

e Suppose the blue wave represents the complex audio
and the red one is a sinusoidal wave of a certain

frequency n.

e Green line means the sample
points, N=8.

e |f the sinusoidal wave fits the
signal well, then Fnis large, which
means this frequency component

" |
C:W
) m
1
.

S

100 0 0 o0 %0

LY

600 700 00 0

0.9872*0.9999 = 0.9871
0.3015*0.7612 = 0.2295

takes a big ratio in the complex e

. 0.7355*-0.1226 = -0.0902 =20

SIgNada . 0777302188 = 0.1700
-0.5092 *.0.2729 = 0.1390
-0.9255'0.0932 = -0.0863 ___|
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Comparison between DCT and DFT

e You may think now that the DCT is inherently
superior to the DFT because it doesn’t trouble you
with complex numbers, and it yields twice the
number of frequency components. But how about
the phase information?

e The DFT contains both real part and imaginary part,
and thus we can get the phase information. The DCT,
however, cancels out the sine terms, together with
the phase information.
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Phase Information in DFT

e Let the equation for the inverse discrete Fourier
transform be as given in (4.7). Then the magnitude
of the nth frequency component, A, is given by

A, =+a?+b%, 0<n<N-1

e The phase of the nth frequency component, g, , is
given by @, = —tan‘l(b"/an) ,0<n<N-1

e The magnitude/phase form of the inverse DFT is
given by f, = XN-3 A,,cos(2nnk + @,,)
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Phase Information

e Phase information in images — important!

(A’s spectrum (B’s spectrum
B’s phase angle) A’s phase angle)
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Phase Information

e Phase information in audio

Audio is a wave that continuously comes into your ears, so
actually we don’t detect the phase difference.

However, if two waves of the same frequency, one is phase
shifted, come to you at the same time, then you will hear
the destructive interference.
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Fast Fourier Transform(FFT)

e The usefulness of the discrete Fourier transform was
extended greatly when a fast version was invented by
Cooley and Tukey in 1965. This implementation, called
the fast Fourier transform (FFT), reduces the
computational complexity from O(N?) to O(N log,(N)).
N is the number of samples.

e The FFT is efficient because redundant or unnecessary
computations are eliminated. For example, there’s no
need to perform a multiplication with a term that
contains sin(0) or cos(0).
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FFT

e The FFT algorithm has to operate on blocks of samples
where the number of samples is a power of 2.

e The size of the FFT window is significant here because
adjusting its size is a tradeoff between frequency and
time resolution. You have seen that for an FFT window
of size N, N/2 frequency components are produced.
Thus, the larger the FFT size, the greater the
frequency resolution. However, the larger the FFT size,
the smaller the time resolution. Why?
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FFT

e What would happen if the window size doesn’t fit an integer-
multiple of the signal’s period?

e For example, Assume that the FFT is operating on 1024
samples of a 440 Hz wave sampled at 8000 samples per second.
Then the window contains (1024/8000)*440=56.32 cycles =>
the end of the window would break the wave in the middle of a
cycle.

e Due to this phenomenon(called spectral leakage), the FFT may
assume the original signal looks like Fig.4.21.

The signal becomes discontinuous.

Figa.21 |/ M
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Spectral Leakage

e A simple sinusoidal wave of 300Hz

e After FFT, some frequencies other than 300Hz appear
due to spectral leakage
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Windowing Function

e Window function - to reduce the amplitude of the sound
wave at the beginning and end of the FFT window. If the
amplitude of the wave is smaller at the beginning and end of

the window, then the spurious frequencies will be smaller in
magnitude as well.

TABLE 4.4 Windowing Function for FFT
2 N 1 (2@t _ -
T for O =g < 5 ur) = E[I - wh(TH for 0=r=17
u(ry = R T ' -
7P = =] for — =1 =T Hanning windowing function
: i 2
Triangular windowing function
i . {2mt) 2wt 4t
wir) = 0.54 - (}.4¢acm(%) for 0=1=T ur)=042-05 cos(-f) 4 {n.nxcns( —)
—— Triangle =~ —— Hamming - _ - r T
—————— Hanning ~ ——— Blackmann o : for0=r=T
Hamming windowing function
Blackman windowing function
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Window Function

e The frequency components become more accurate,
but the magnitudes also decrease. To counteract this,
some other algorithms would be used.

00 0 100 %0 20 0 0 10 400 460 w0
Frequancy

Original wave Applying window function FFT result
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MIDI

e What do you know about MIDI?

A kind of music file format like *.wav, *.mp3, *.midi?
A kind of music without human voices?

e MIDI is short for Musical Instrument Digital Interface

e Actually, MIDI is far from you can imagine. MIDI is a
standard protocol defining how MIDI messages are
constructed, transmitted, and stored. These messages
communicates between musical instruments and
computer softwares.
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MIDI vs. Sampled Digital Audio

e A sampled digital audio file contains a vector of
samples. These samples are reconstructed into an
analog waveform when the audio is played.

e MIDI stores “sound events” or “human performances
of sound” rather than sound itself.

e A MIDI file contains messages that indicate the notes,
instruments, and duration of notes to be played. In
MIDI terminology, each message describes an
event( the change of note, key, tempo, etc.)
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Advantages and Disadvantages

e Advantages

Requiring relatively few bytes to store a file compared with
sampled audio file, why?

Easy to create and edit music

e Disadvantages

More artificial and mechanical(sampled audio can capture
all the characteristics of the music)
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How MIDI Files Are Created, Edited, and Played?

e From hardware

When you play the electronic piano with it connected to a
PC, midi messages are being created. m T

e From software

Overture

=.enieg

3OS shanvn SR OBETEO)  VETHSFA,  REM)  EBIH)
2[E[a) |(W|e|% O[R[®)[J[d #[>]J]o]+ ~|[=[E[rT][é &
I —————

2T

HERTIEE | HERE(ERRCZE N

M e s
‘%U; i ‘

’Q 1 i . | |
R =t 5 < :

o, &
Eirr . err: - PR itir -

. . . Departument of Computer Sedence %



Musical Acoustics and Notation

e The range of human hearing is from about 20 Hz to
about 20,000 Hz. As you get older, you lose your
ability to hear high frequency sounds.

Test if you can hear the frequency you should be able to
hear at your age

http://www.ultrasonic-ringtones.com/

e |f the frequency of one note is 2" times of the
frequency of another, where n is an integer, the two
notes sound “the same” to the human ear, except
that the first is higher-pitched than the second.

(n=1=>5/%)
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Musical Acoustics and Notation

e Let g be the frequency of a musical note. Let h be the
frequency of a musical tone n octaves higher than g.
= h =2"g

e The word octave comes from the fact that there are
eight whole notes(% 3 )between two notes that
sound the same.

e There are 12 notes in an octave:

A# CHED# FRHGH

bbidhisdbidbiddiadli]

T ABCDEFGA
Middle C

. s . Departoent of Clampater Secence
’/’Ww fo Mﬂm 58 Hational Toing Fua University ai!;i




Musical Acoustics and Notation

e |f we know the frequency of a certain note, how to
compute the others?

2f = f-x1? = x = 1.059463
e That is, if A has frequency 440Hz, then A# has
frequency 440*%1.059463=466.16Hz
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Summary

e Audio signal sampling, digitization
e Audio dithering

e Noise shaping

* Non-linear quantization

* Frequency analysis — FFT

e MIDI
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