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Abstract

In this paper, we propose a new approach to camera
calibration from silhouettes under circular motion with
minimal data. We exploit the mirror symmetry property
and derive a common homography that relates silhouettes
with epipoles under circular motion. With the epipoles
determined, the homography can be computed from the
frontier points induced by epipolar tangencies. On the
other hand, given the homography, the epipoles can be
located directly from the bi-tangent lines of silhouettes.
With the homography recovered, the image invariants
under circular motion and camera parameters can be
determined. If the epipoles are not available, camera
parameters can be determined by a low-dimensional
search of the optimal homography in a bounded region. In
the degenerate case, when the camera optical axes
intersect at one point, we derive a closed-form solution for
the focal length to solve the problem. By using the proposed
algorithm, we can achieve camera calibration simply from
silhouettes of three images captured under circular motion.
Experimental results on synthetic and real images are
presented to show its performance.

1. Introduction

Camera calibration from uncalibrated image sequences
without using any specific calibration patterns can be
classified into two camps; namely, the feature-based and
silhouette-based approaches. In the feature-based approach,
structure from motion (SfM) algorithm [20] determines the
camera information and the 3D structure of the object
simultaneously from the feature correspondences. In the
silhouette-based approach, the cameras are first calibrated
from the object silhouettes and then the volumetric
description, intersection [1] or the image-based visual hull
(IBVH) [2] techniques are applied for object modeling.

It takes more efforts to calibrate cameras in general
motion from silhouettes [18, 19] than feature points. Boyer
[19] proposed a quantitative and qualitative criterion for
measuring the silhouette consistency from viewing cones

(or named visual cones), but the estimated results heavily
depend on the initial parameters. Sinha et al. [18] proposed
a camera calibration method from dynamic silhouettes. The
key step is to robustly compute the epipolar geometry from
two views. Therefore, dynamic silhouettes are needed for
providing enough constraints.

Additional constraints on camera motion, such as
circular motion, can facilitate the camera calibration. It may
seem to be a restriction to assume the camera motion to be
circular motion. However, in real applications, such as 3D
digitization in digital museum, 3D object reconstruction
from a circular motion sequence is a practical and widely
used approach for generating 3D models and a number of
3D reconstruction methods focused on circular motion
have been proposed, including the feature-based [3,4,5,6,7]
and silhouette-based [8,9,12,13,14,15] methods.

In this paper, we deal with the problem of camera
calibration from silhouettes under circular motion.
Different from previous silhouette-based methods based on
surface of revolution (SoR), the proposed approach can be
applied with very few sparsely located views to calibrate
the cameras. We introduce the concept of mirror symmetry
property [16,17] into circular motion and derive the
property that images under circular motion share a common
homography that relates silhouettes with epipoles. With
this property, epipoles can be located directly from the
silhouettes and then the remaining camera parameters can
be recovered.

In addition, in the degenerate case, when the optical axes
of all cameras intersect at one point, for a reference camera,
the projection of x-axis direction in an image, or named
x-axis vanishing point, is an infinite point, which
influences the calibration process. For this degenerate case,
we derive a closed-form solution to determine the focal
length by using the epipoles between three images captured
under circular motion.

This paper is focused on the problem of camera
calibration from silhouettes instead of features, thus it is
particularly useful when it is difficult to establish accurate
feature correspondences from texture-less, transparent,
translucent, or reflective objects, such as jadeite material.

The remainder of this paper is organized as follows. We
review some previous works in section 2. Section 3



describes the circular motion geometry. In section 4, we
present how to apply the mirror symmetry property to
formulate the common homography. The proposed camera
calibration algorithm from silhouettes under circular
motion is described in section 5. Experimental results on
both synthetic and real data are given in section 6. Finally,
we conclude this paper in section 7.

2. Previous works

For camera calibration under circular motion, the
feature-based [3,4,5,6,7] and silhouette-based
[8,9,12,13,14,15] approaches have been proposed.

In the feature-based approaches, Fitzgibbon et al. [3]
computed the fundamental matrices and trifocal tensors to
uniquely determine the rotation angles. The reconstruction
is determined up to a two-parameter family. Jiang et al. [4,5]
further developed a method that avoids the computation of
multi-view tensors to recover the circular motion geometry
by either fitting conics to tracked points in at least five
images or computing a plane homography from minimally
two points in four images. Cao et al. [6] aimed at the
problem of varying focal lengths under circular motion
with a constant but unknown rotation angle. With the
invariance of the essential matrix, the ratio of varying focal
lengths can be determined. Zhong and Hung [7] proposed a
circular projective reconstruction method.

In the silhouette-based approaches, Mendonca and
Cipolla [8] addressed the problem of estimating the
epipolar geometry from contours in the affine and circular
motion cases. For the circular motion case, the relation
between the epipolar tangencies and the image of rotation
axis is used to define a cost function. Under the assumption
of constant rotation angle, they iteratively minimize the
cost function to determine the two common epipoles
between adjacent images. Huang and Lai [15] further
extended this method to determine the focal length. In [9],
Mendonca et al. exploited the symmetry properties of the
SoR swept out by the rotating object to obtain an initial
guess of image invariants, followed by several
one-dimensional searching steps to obtain the epipolar
geometry. However, it still requires the knowledge of the
camera intrinsic parameters in advance to recover the
rotation angles and the object structure. Zhang et al. further
extended this method to achieve auto-calibration [12] and
formulated the circular motion as 1D camera geometry to
achieve more robust motion estimation [13].

Most of the silhouette-based methods are based on the
SoR to obtain an initial guess of image invariants, thus it is
infeasible to deal with sparsely located images. Wong et al.
[10,11] presented a method based on two epipolar
tangencies between image pairs to deal with this problem,
but it requires the camera intrinsic parameters to be known
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Figure 1. (a) The geometry of circular motion. (b) The image
invariants under circular motion

in advance and needs to solve a high-dimensional
optimization problem with non-trivial initialization. The
method described in [15] could deal with this problem to
achieve auto-calibration. Nevertheless, it is restricted to the
constant interval angle assumption. Recently, Hernandez et
al. [14] defined the silhouette coherence that uses the entire
visible silhouettes, not only the tangencies, to measure the
silhouette consistency. Cameras are calibrated by
maximizing the silhouette coherence and good results
could be obtained when the errors of the initial interval
angles are within 15 degrees. However, a roughly initial
guess for camera parameters is still needed.

3. The geometry under circular motion

The geometry of circular motion can be depicted in
Figure 1(a). Let the world coordinate system be centered at
the circle center X, and a reference camera C be placed on
the negative Z-axis and rotate about Y-axis (L). If the
camera intrinsic parameters and pose are kept constant
under the circular motion, the image IT; will contain image
invariants [3,4,5,12] of the geometry as shown in Figure
1(b). In this figure, line 1, is the image of the camera plane
I, and line I is the projection of L,. Three points, vy, vy,
and x; are the vanishing points of X-axis, Y-axis and Z-axis,
respectively. The point X, is also the intersection of I and 1,

In mathematical expression, the camera projection
matrix P can be written as:

P=KR[R,(0)|-T] (1

where K is camera intrinsic parameter, R=[r; r, r3] is the
camera pose, T is the camera position in world coordinate
and Ry(0) is the rotation matrix about L, with angle 6.
The three vanishing points can be expressed as:
v v, X]~KR=K[r, n, nr] (2)

where symbol “~” denotes the equivalence relation in the
homogenous coordinate.

Therefore, the image of L and the projection of camera
plane IT;, are related to these invariant points as follows:

L=xxv, [ =x, XV, 3)
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Figure 2. (a) The bird’s eye view of the two view geometry
generate by a plane mirror. (b) Epipole and bi-tangent lines.

4. Homography from mirror symmetry

In this section, we describe how to apply the mirror
symmetry property to derive the plane homography that
relates the object contours with epipoles.

4.1. Epipolar geometry from mirror reflection

As described in [16,17], the corresponding geometry
established by placing a plane mirror in the scene can be
illustrated as a bird’s eye view in Figure 2(a). In the figure,
IT,,, is the mirror plane, X is an object point and its reflection
X’ could be imagined as a virtual point at the opposite side
of the mirror plane. C represents the real camera with the
associated image plane denoted by II;. Similarly, there
exists a virtual camera V on the other side of mirror and its
projection onto II;, which is the epipole denoted by e.
Because of mirror reflection, the projection of X’ onto
camera C can be regarded as the projection of X onto
camera V. Therefore, the two view geometry for a camera
with a plane mirror is established.

For simplicity, we denote an object silhouette in the
image plane of camera C as Sc. In this setting, the image
plane IT; contains two silhouettes, real Sc and reflected Sy,
as depicted in Figure 2(b). The major property is that the
epipole e can be located by the outer tangent lines of the
two silhouettes, Sc and Sy, and the tangent points, for
instance x. and x,, will be considered as the corresponding
points (see [16,17] for details).

4.2. Circular motion and mirror reflection

The geometry under the setting of plane mirrors is
similar to the circular motion. To be more specific, the
relationship is illustrated in Figure 3. In Figure 3(a), C; and
C, denote two instances of the camera under circular
motion. Imagine that there is a plane mirror I, which is
parallel to and passes through the rotation axis, to be placed
in the middle of two camera centers. According to the
mirror symmetry property, there is a virtual camera V,,
which is the reflection of camera C; according to II,,
centered at the same position of camera C,. Therefore, we
can relate the epipole ec,, which is the projection of C, onto

X, visual cone
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Figure 3. The geometry relationship between the circular
motion and the mirror reflection.

C,, with silhouettes S¢; and Sy, by the following equation:

ety (xa X Xy ) =0 “)
where X and Xy, is a pair of corresponding points from the
tangencies of silhouettes Sc; and Syj,.

Similarly, camera V, can be regarded as the reflection of
camera C, according to another mirror plane II,. To be
more specific, we enlarge this part in Figure 3(b). In this
figure, I1, and II, are the image planes of cameras C and V,
respectively. Because of the coincident camera center of
cameras C and V, silhouettes Sc and Sy can be transformed
with each other via a non-singular 3x3 homography H [20].

From mathematical derivation, the camera projection
matrices for cameras C and V can be expressed as:

P. =KR[R,(0)|-T] 5)
B, =KRE[R,(6)|-T] (©)

where X = diag([-1 1 1]).

Suppose the projections of an object point X onto
cameras C and V are denoted by x. and x,, respectively.
The relation between the corresponding image points can
be expressed as:

x, ~KRER"K 'x, = Hx, (7)
The homography H only involves the constant camera
intrinsic parameters and camera pose. Thus, all cameras

under circular motion share the common homography.
Substituting equation (7) into equation (4) leads to

el - (%ey X Hxey ) =0 (®)
Similarly, we can derive the following relation
ec '(xcz x Hx, ) =0 ©)

For any two views under circular motion, a pair of
correspondence points with two epipoles can provide two
linear constraints on H according to equation (8) and (9).
With enough constraints, H can be linearly determined by
the least-square estimation.

On the other hand, given the homography H, a silhouette
can be transformed to its reflected silhouette. Therefore, the
epipoles of any two views can be determined from the
bi-tangent lines of one of the silhouettes and the
transformed silhouette of the other one.



In addition, equation (8) can be rewritten as follow:

xgl([eCZ ]XH)xcz =0 (10)
Therefore, the fundamental matrix can be expressed as:
F=le,].H (1

The derived equations are similar to those in [9,20].
However, the property is derived from the mirror symmetry
property. Therefore, we have a new observation that the
epipoles of two views under circular motion can be directly
located instead of performing one-dimensional search [9].

4.3. Homography and image invariants

With the pole-polar relationship, we can show that
[, =wv, (12)

where @ =K "K' is the image of the absolute conic.

The homography H derived in the previous section can
be further used to relate to the image invariants as follow:

lT
H=KRSR'K' =1 2K K™ =122 (13)

Therefore, if there is knowledge about vy or 15, equation (8)
and (9) can also be applied to determine the unknown part
with a linear solution.

5. Camera Calibration

In this section, we discuss how to estimate the camera
parameters by using the proposed property and how to
determine the focal length under the degenerate case. We
assume the optical centers coincide with the image centers,
and the camera intrinsic parameter has only one unknown,
i.e. the focal length.

5.1. Recovery of the homography

If the epipoles are available, the tangent points of
silhouettes induced by the epipoles are considered as point
correspondences, and equation (8) and (9) are used to
compute the homography H. One way to extract the
epipoles from object silhouettes can be found in [8].

If the epipoles are not available, a low-dimensional
search of the optimal H in a bounded region is performed.
As given in equation (7), H contains four parameters which
are focal length, denoted by f, and three rotation angles,
denoted by 6y, 0, and 0,, respectively, of the camera pose.
In fact, H is independent of the rotation angle of x-axis
because of the following relation:

R.(0,)2R.(0,)" =% (14)
Thus, the number of unknowns of H is reduced to three.

Under circular motion, all cameras are positioned on the
same plane, which is I1j, as shown in Figure 1(a), and their
projections, which are epipoles, are co-linear. The
homography H can hence be determined by minimizing the
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Figure 4.The error function of different parameters of H.

distance from the epipoles to the co-linear line, 1, and the

cost function is defined as follow:

Cost(f, 0,,0. ) = (dist(el.j A, )+ dist(eﬁ A )) (15)
5,.8; )es

where the function dist( ) gives the distance from a point to

a line, the set S contains all silhouette pairs and e,, denotes

the epipole which is the projection of camera C, onto C,,

As described in section 4.2, the epipoles of a pair of
images can be located from a given H and the epipole
co-linear line, 1, is computed by a least-square line fitting.

Unfortunately, under a given focal length, the error
function is complex as shown in Figure 4. Figure 4(a) is the
error function of the rotation angles within +/- 20 degrees
of the ground truth and Figure 4(b) is that within +/- 1
degree. Thus, the optimization methods will be easily
trapped into local minima without very good initialization.
However, the values of the unknowns can be bounded
within a reasonable range. The optimal H can be searched
discretely in a finite parameter spaces.

In practice, a candidate list of H with the cost smaller
than a predefined threshold, which can be set to the average
cost, will be kept because of the noise. The final solution is
chosen with the smallest error in the epipolar tangency
constraints, whose detailed description can be found in
[10].

5.2. Recovery of the image invariants

When the homography H is obtained, the epipoles of a
pair of views can be determined. The line 1;, is determined
via line fitting of epipoles. The line I is determined via line
fitting of the intersections of the corresponding epipolar
lines [8]. The point x; hence can be computed from the
intersection of 1, and L. The point v, is computed from
equation (12) given f and I or from equation (8), (9) and
(13) when the epipoles are available.

5.3. Recovery of the focal length

If the homography H is determined via a bounded-search
process, the focal length is therefore determined. If it is
determined via given epipoles, with the recovered image
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Figure 5. The geometric relatlonshlp among the focal length
and the epipoles.

invariants, v, and Iy will provide two constraints to the
image of the absolute conic as expressed in equation (12).
The focal length can therefore be computed by solving two
quadratic equations.

5.4. Recovery of the camera pose

From equation (2), camera pose R can be computed by
= aK’le/HK’lvx ,

=BKx, B =1 (16)

n=nKXHK

Notice that, the sign of rotation axis has no difference for
projection to the image coordinates, but back-projection of
image points will lead to a sign ambiguity. This ambiguity
can be resolved by back-projecting the epipole, which is
obtained from images, and checking the sign with the
corresponding camera position. Finally, the overall optimal
orthogonalization is done by SVD.

5.5. Recovery of the rotation angle about L

The inscribed angle theorem of circle states that an
inscribed angle is exactly half the corresponding central
angle. As shown in Figure 3(a), we have

£LCX.C,=2£C,C,C, 17)
where C; is an arbitrary camera on the circle.

In this case, the rotation angle about L between cameras
C, and C, can be obtained by calculating the angle between
the back-projection lines of the corresponding epipoles of
cameras C; and C; in the image of camera C; as follow:

ZCC.C, = ang(K_lel,K"lez) (18)

where e and e; are epipoles of C; and C, in the image of Cs.

5.6. Degenerate case

When the optical axes intersect at one point, the x-axis
vanishing point, v,, is an infinite point and can not be
determined from the SoR [9,12,13]. Therefore, the
constraints arisen from vy, such as equation (12), can not be
used for determining the focal length.

(a) (b)

Figure 6. (a) The enlarged figure of AXPC, (b) The
relationship among epipoles and image entities.

In addition, in this case, 0y is zero, the parameters of H

will hence be reduced to only one, which is 0,.
H=KR.(0.)2R.(0.) K" =R.(0.)ER.(0.) (19)

where K = diag(f,f,1) and KR, = R, K.

Thus, the focal length will also be eliminated in H.

However, from three images, there are constrains on the
epipoles and the focal length, as shown in Figure 5, thus a
closed-form solution of the focal length can be derived in
this case. For the derivation, we introduce some symbol
definitions. In Figure 5, C, to C; are three cameras and IT; to
I1; are their corresponding image planes. The image plane
is placed at a distance f from the camera center, F is the
distance from camera center to x,, and e, denotes the
epipole that is the projection of camera C,, on camera C,. As
depicted in Figure 6(b), a, b, ¢ denote the distance from x,
to ey,, €13, and e,3, respectively, and d is the distance from x;
to the image center. In Figure 5, assume the world center is
placed at circle center X, in 2D case and the coordinate of
C, is [0 —r], the coordinate of C, and C; can be expressed
as:

C, =[2arF/(a* + F*),r(F* —a*)/(a* + F*)] (20)
C, =[2brF/(b* + F*),r(F* =b*) /(> + F*)] (21)
Note that Figure 6(a) is the enlarged figure of AXPC, in

Figure 5. Since AXPC; is similar to AQOC,, we have the
following relationship:

00:0C, =X P:PC, (22)

where

00=c¢,0C,=F,X P=+r’-PC, ,PC, =

The distance from C, to C; can be calculated from
equation (20) and (21). Also, F is the distance from camera
center to X, given by

F=y{r +a? (24)

Therefore, from equation (22), (23) and (24), we can
derive the closed-form solution for the focal length f by
using a, b, ¢ and d as follow:

f=+t(bc-ac)-ab-d’ 25)

where f'is chosen as the positive solution.

GG (23




In addition to the case with a rotationally symmetric
object, another degenerate case occurs when the contact
points of the epipolar planes with the object lie on the
rotation axis. In this case, points x. and x,, depicted in
Figure 2(b), are identical and the derived constraint cannot
be used. However, this problem can be avoided by putting
the object away from the rotation axis. The expense is to
sacrifice image resolution for the object, which is not a
problem for a high-resolution camera.

6. Experimental results

In this section, both synthetic and real data are used to
evaluate the proposed algorithm. For each test image
sequence, only the silhouettes, instead of feature
correspondences, are used for camera calibration.

6.1. Synthetic data

In this part, the Stanford bunny model is used to generate
100 data sets to test the algorithm. The model is projected
to each image, with the coordinates of all pixels rounded,
and then the convex hull algorithm is applied to find the
silhouette. Each test set contains 12 images of size 800x600
pixels with interval angle 30 degrees. The value of focal
length and the camera pose are randomly generated. The
range of fis 1500~5000 pixels, 6y is within -10~-50 degrees,
0y and 0, are within -5~5 degrees. For each test, the number
of images used for the reconstruction is randomly chosen
from 3 to 6.

The experimental results are shown in Table 1. In this
Table, # is the number of images used and A6; is the
average error of the interval angles. The errors of angles are
represented in degrees. The error in focal length is
computed by taking the focal length difference divided by
the ground truth.

For the experiment with the degenerate case, we generate
another 100 data sets based on the same setting as the
previous ones except fixing 0, to 0 degree. In this
experiment, the number of images used for reconstruction
is set to 3 and the estimated results are listed in Table 2.

6.2. Real data

In the experiment on real data set, we provide three kinds
of image sequences. All sequences are sparsely located
under circular motion and are not suitable for producing
SoR. We applied the proposed algorithm to estimate the
camera parameters and then minimized the epipolar
tangency constraints [ 10] for all pairs of views to refine the
camera parameters.

The first real-data experiment is on the Fox sequence,
which contains 12 images of size 640x480 pixels and the
angle between images is about 30 degrees (may deviate a
little bit due to mechanical error). Some example views are

Table 1. Accuracy of the recovered camera parameters

#loer | AL | AB,(O) | A, | A8 | Af(%)
3 ave. [ 096 0.23 0.84 2.61 532
std. 1.23 0.49 1.17 5.71 4.86
4] ave. | 086 0.17 0.51 1.49 4.85
std. 1.17 0.14 0.58 1.47 4.73
5 ave. | 053 0.13 0.38 112 3.98
std. 0.51 0.11 0.34 0.73 3.60
6 ave. | 046 0.15 0.43 0.93 3.70
std. 0.39 0.13 0.32 0.55 2.89

Table 2. Accuracy of the recovered camera parameters for the
degenerate case

#ler [ A0.) [ A6,) [ 46,¢) [ a6,() | AF(%)
3| avg. 0.56 0 0.15 1.41 2.87
std. 1.03 0 0.36 1.82 4.56

Figure 9. The estimated angles for the Fox sequence.

depicted in Figure 7. In this case, the epipoles are first
determined from the method in [8], and then used to
compute the homography and the remaining camera
parameters. Sample views of the reconstructed 3D model
and the estimated angles are shown in Figure 8 and 9,
respectively.
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Figure 12. The estimated interval angles between images

The second experiment is on the crystal apple sequence
as depicted in Figure 10. Notice that the object is made of
glass and it is almost impossible to establish feature
correspondences in this case. In this part, six images of size
640x480 pixels with different interval angles are chosen.
The estimated results are shown in Figure 11 and 12. Figure
12 shows the ground truth angles in black and the
reconstructed values in white. We can see the estimated
angles are quite close to the true angles.

Finally, we show the experiment on the horse sequence
[11], which contains 14 images of size 640x480 pixels. The
sequence was taken under an approximately circular
motion and the rectified step makes this sequence become a
degenerate case. We chose 3 images, as shown in Figure 13,
with their optical axes approximately intersecting at a point,
for reconstruction. The comparison of the estimated focal
length and the ground truth is listed in Table 3.

In Table 3, ‘GT’ means the ground truth, ‘Ini.” is the
focal length estimated by the proposed method, and ‘Opt.’
is the refined focal length estimate after minimizing the
overall epipolar tangency error. The error of the initial
estimated focal length is about 5.3% compared to the
ground truth. Sample views of the reconstructed 3D model
are shown in Figure 14. Because it is reconstructed from 3
views only, the results may seem to be rough. In [11], the
camera intrinsic parameters are obtained from off-line
calibration. For the proposed method, the camera is
auto-calibrated.

6.3. Comparison with Other Methods

The proposed method is also compared with the methods
proposed in [10] and [12] in the following experiments.

e St 6

Figure 14. Sample views of the reconstructed horse model.

Table 3. Comparison of the recovered focal length with the
ground truth for the degenerate case.

Method GT Proposed Ini. Proposed Opt.
f 684.98 723.29 664.85
-
i
(b)

Figure 15. Sample views of the reconstructed (a) Head model
and (b) Vase model.

First, the head image sequence in [10] was used for
reconstruction. The sample views of the reconstructed
model and the estimated angles are shown in Figure 15(a)
and 16, respectively. In [10], the focal length was calibrated
off-line, while the proposed method auto-calibrated the
camera. The RMS error of interval angles in [10] is 0.2131°
and it is 0.1015° by using the proposed method.

In addition, we applied the proposed algorithm to four
example images of the vase sequence that were directly
clipped from [9] and enlarged to the size of 640x480 pixels.
The reconstructed model is shown in Figure 15(b) and the
comparison of the estimated focal length with [12] and the
ground truth is listed in Table 4. As shown in Table 4, our
estimated error is about 4% compared to the ground truth.
Notice that, we only used 4 clipped and enlarged images to
calibrate the camera instead of the original 18 images used
in [12].

It is obvious that more correct results could be obtained
when more views are used. However, our proposed method
can still work well when only very few sparse views are
available, while the previous silhouette-based algorithms
are not feasible for this kind of sequences.
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Figure 16. The estimated interval angles between images.

Table 4. Comparison of the recovered focal length with the
ground truth and the method by Zhang et al. [12].

Method GT Zhang et al.[12] Proposed Opt.
# - 18 4
f 2389.8 2370.7 2288.4

7. Conclusion

In this paper, we introduced the concept of mirror
symmetry property into circular motion and provide a new
observation that the epipoles can be located directly from
the silhouettes by using the derived homography under
circular motion. With this proposed algorithm, the camera
can be calibrated from the silhouettes of sparse views,
which can be as small as three, under circular motion. This
is quite different from the previous silhouette-based
methods, which need dense (the interval angle smaller than
20 degrees) and complete (make a turn) image sequences to
generate SoR. In addition, we derived a closed-form
solution for focal length under the degenerate case when
the camera optical axes intersect at one point.

Experimental results on synthetic and real data sets are
presented to demonstrate the performance of the proposed
algorithm. Although the epipoles and the geometry under
circular motion can be well determined for the
feature-based methods, the silhouette-based approach has
its advantage when the feature correspondences could not
be reliably established, which is very common in practice.
Previous silhouette-based methods can produce good
camera calibration results only with dense views. By using
the proposed algorithm, the camera calibration from
silhouettes at very sparse views becomes feasible.
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