
 

 

 
Abstract 

 
In this paper, we propose a new approach to camera 

calibration from silhouettes under circular motion with 
minimal data. We exploit the mirror symmetry property 
and derive a common homography that relates silhouettes 
with epipoles under circular motion. With the epipoles 
determined, the homography can be computed from the 
frontier points induced by epipolar tangencies. On the 
other hand, given the homography, the epipoles can be 
located directly from the bi-tangent lines of silhouettes. 
With the homography recovered, the image invariants 
under circular motion and camera parameters can be 
determined. If the epipoles are not available, camera 
parameters can be determined by a low-dimensional 
search of the optimal homography in a bounded region. In 
the degenerate case, when the camera optical axes 
intersect at one point, we derive a closed-form solution for 
the focal length to solve the problem. By using the proposed 
algorithm, we can achieve camera calibration simply from 
silhouettes of three images captured under circular motion. 
Experimental results on synthetic and real images are 
presented to show its performance. 
 

1. Introduction 
Camera calibration from uncalibrated image sequences 

without using any specific calibration patterns can be 
classified into two camps; namely, the feature-based and 
silhouette-based approaches. In the feature-based approach, 
structure from motion (SfM) algorithm [20] determines the 
camera information and the 3D structure of the object 
simultaneously from the feature correspondences. In the 
silhouette-based approach, the cameras are first calibrated 
from the object silhouettes and then the volumetric 
description, intersection [1] or the image-based visual hull 
(IBVH) [2] techniques are applied for object modeling. 

It takes more efforts to calibrate cameras in general 
motion from silhouettes [18, 19] than feature points. Boyer 
[19] proposed a quantitative and qualitative criterion for 
measuring the silhouette consistency from viewing cones 

(or named visual cones), but the estimated results heavily 
depend on the initial parameters. Sinha et al. [18] proposed 
a camera calibration method from dynamic silhouettes. The 
key step is to robustly compute the epipolar geometry from 
two views. Therefore, dynamic silhouettes are needed for 
providing enough constraints. 

Additional constraints on camera motion, such as 
circular motion, can facilitate the camera calibration. It may 
seem to be a restriction to assume the camera motion to be 
circular motion. However, in real applications, such as 3D 
digitization in digital museum, 3D object reconstruction 
from a circular motion sequence is a practical and widely 
used approach for generating 3D models and a number of 
3D reconstruction methods focused on circular motion 
have been proposed, including the feature-based [3,4,5,6,7] 
and silhouette-based [8,9,12,13,14,15] methods. 

In this paper, we deal with the problem of camera 
calibration from silhouettes under circular motion. 
Different from previous silhouette-based methods based on 
surface of revolution (SoR), the proposed approach can be 
applied with very few sparsely located views to calibrate 
the cameras. We introduce the concept of mirror symmetry 
property [16,17] into circular motion and derive the 
property that images under circular motion share a common 
homography that relates silhouettes with epipoles. With 
this property, epipoles can be located directly from the 
silhouettes and then the remaining camera parameters can 
be recovered. 

In addition, in the degenerate case, when the optical axes 
of all cameras intersect at one point, for a reference camera, 
the projection of x-axis direction in an image, or named 
x-axis vanishing point, is an infinite point, which 
influences the calibration process. For this degenerate case, 
we derive a closed-form solution to determine the focal 
length by using the epipoles between three images captured 
under circular motion. 

This paper is focused on the problem of camera 
calibration from silhouettes instead of features, thus it is 
particularly useful when it is difficult to establish accurate 
feature correspondences from texture-less, transparent, 
translucent, or reflective objects, such as jadeite material. 

The remainder of this paper is organized as follows. We 
review some previous works in section 2. Section 3 
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describes the circular motion geometry. In section 4, we 
present how to apply the mirror symmetry property to 
formulate the common homography. The proposed camera 
calibration algorithm from silhouettes under circular 
motion is described in section 5. Experimental results on 
both synthetic and real data are given in section 6. Finally, 
we conclude this paper in section 7. 

2. Previous works 
For camera calibration under circular motion, the 

feature-based [3,4,5,6,7] and silhouette-based 
[8,9,12,13,14,15] approaches have been proposed. 

In the feature-based approaches, Fitzgibbon et al. [3] 
computed the fundamental matrices and trifocal tensors to 
uniquely determine the rotation angles. The reconstruction 
is determined up to a two-parameter family. Jiang et al. [4,5] 
further developed a method that avoids the computation of 
multi-view tensors to recover the circular motion geometry 
by either fitting conics to tracked points in at least five 
images or computing a plane homography from minimally 
two points in four images. Cao et al. [6] aimed at the 
problem of varying focal lengths under circular motion 
with a constant but unknown rotation angle. With the 
invariance of the essential matrix, the ratio of varying focal 
lengths can be determined. Zhong and Hung [7] proposed a 
circular projective reconstruction method. 

In the silhouette-based approaches, Mendonca and 
Cipolla [8] addressed the problem of estimating the 
epipolar geometry from contours in the affine and circular 
motion cases. For the circular motion case, the relation 
between the epipolar tangencies and the image of rotation 
axis is used to define a cost function. Under the assumption 
of constant rotation angle, they iteratively minimize the 
cost function to determine the two common epipoles 
between adjacent images. Huang and Lai [15] further 
extended this method to determine the focal length. In [9], 
Mendonca et al. exploited the symmetry properties of the 
SoR swept out by the rotating object to obtain an initial 
guess of image invariants, followed by several 
one-dimensional searching steps to obtain the epipolar 
geometry. However, it still requires the knowledge of the 
camera intrinsic parameters in advance to recover the 
rotation angles and the object structure. Zhang et al. further 
extended this method to achieve auto-calibration [12] and 
formulated the circular motion as 1D camera geometry to 
achieve more robust motion estimation [13]. 

Most of the silhouette-based methods are based on the 
SoR to obtain an initial guess of image invariants, thus it is 
infeasible to deal with sparsely located images. Wong et al. 
[10,11] presented a method based on two epipolar 
tangencies between image pairs to deal with this problem, 
but it requires the camera intrinsic parameters to be known 

in advance and needs to solve a high-dimensional 
optimization problem with non-trivial initialization. The 
method described in [15] could deal with this problem to 
achieve auto-calibration. Nevertheless, it is restricted to the 
constant interval angle assumption. Recently, Hernandez et 
al. [14] defined the silhouette coherence that uses the entire 
visible silhouettes, not only the tangencies, to measure the 
silhouette consistency. Cameras are calibrated by 
maximizing the silhouette coherence and good results 
could be obtained when the errors of the initial interval 
angles are within 15 degrees. However, a roughly initial 
guess for camera parameters is still needed. 

3. The geometry under circular motion 
The geometry of circular motion can be depicted in 

Figure 1(a). Let the world coordinate system be centered at 
the circle center Xs and a reference camera C be placed on 
the negative Z-axis and rotate about Y-axis (Ls). If the 
camera intrinsic parameters and pose are kept constant 
under the circular motion, the image Πi will contain image 
invariants [3,4,5,12] of the geometry as shown in Figure 
1(b). In this figure, line lh is the image of the camera plane 
Πh and line ls is the projection of Ls. Three points, vx, vy, 
and xs are the vanishing points of X-axis, Y-axis and Z-axis, 
respectively. The point xs is also the intersection of ls and lh. 

In mathematical expression, the camera projection 
matrix P can be written as: 

( ) ]|[ TRKRP y −= θ                          (1) 

where K is camera intrinsic parameter, R=[r1 r2 r3] is the 
camera pose, T is the camera position in world coordinate 
and Ry(θ) is the rotation matrix about Ls with angle θ. 
 The three vanishing points can be expressed as: 

][~][ 321 rrrKKRxvv syx =                (2) 

where symbol “~” denotes the equivalence relation in the 
homogenous coordinate. 
 Therefore, the image of Ls and the projection of camera 
plane Πh are related to these invariant points as follows: 

,h s x s s yl x v l x v= × = ×                     (3) 
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Figure 1. (a) The geometry of circular motion. (b) The image 
invariants under circular motion 
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4. Homography from mirror symmetry 
In this section, we describe how to apply the mirror 

symmetry property to derive the plane homography that 
relates the object contours with epipoles. 

4.1. Epipolar geometry from mirror reflection 
As described in [16,17], the corresponding geometry 

established by placing a plane mirror in the scene can be 
illustrated as a bird’s eye view in Figure 2(a). In the figure, 
Πm is the mirror plane, X is an object point and its reflection 
X’ could be imagined as a virtual point at the opposite side 
of the mirror plane. C represents the real camera with the 
associated image plane denoted by Πi. Similarly, there 
exists a virtual camera V on the other side of mirror and its 
projection onto Πi, which is the epipole denoted by e. 
Because of mirror reflection, the projection of X’ onto 
camera C can be regarded as the projection of X onto 
camera V. Therefore, the two view geometry for a camera 
with a plane mirror is established. 

For simplicity, we denote an object silhouette in the 
image plane of camera C as SC. In this setting, the image 
plane Πi contains two silhouettes, real SC and reflected SV, 
as depicted in Figure 2(b). The major property is that the 
epipole e can be located by the outer tangent lines of the 
two silhouettes, SC and SV, and the tangent points, for 
instance xc and xv, will be considered as the corresponding 
points (see [16,17] for details). 

4.2. Circular motion and mirror reflection 
The geometry under the setting of plane mirrors is 

similar to the circular motion. To be more specific, the 
relationship is illustrated in Figure 3. In Figure 3(a), C1 and 
C2 denote two instances of the camera under circular 
motion. Imagine that there is a plane mirror Πm, which is 
parallel to and passes through the rotation axis, to be placed 
in the middle of two camera centers. According to the 
mirror symmetry property, there is a virtual camera V2, 
which is the reflection of camera C1 according to Πm, 
centered at the same position of camera C2. Therefore, we 
can relate the epipole eC2, which is the projection of C2 onto 

 
C1, with silhouettes SC1 and SV2 by the following equation: 

( ) 0212 =×⋅ VC
T
C xxe                           (4) 

where xC1 and xV2 is a pair of corresponding points from the 
tangencies of silhouettes SC1 and SV2. 

Similarly, camera V2 can be regarded as the reflection of 
camera C2 according to another mirror plane Πn. To be 
more specific, we enlarge this part in Figure 3(b). In this 
figure, Πc and Πv are the image planes of cameras C and V, 
respectively. Because of the coincident camera center of 
cameras C and V, silhouettes SC and SV can be transformed 
with each other via a non-singular 3x3 homography H [20]. 

From mathematical derivation, the camera projection 
matrices for cameras C and V can be expressed as: 

( ) ]|[ TRKRP yC −= θ                            (5) 

( ) ]|[ TRKRP yV −Σ= θ                        (6) 
where Σ = diag([-1 1 1]). 

Suppose the projections of an object point X onto 
cameras C and V are denoted by xc and xv, respectively. 
The relation between the corresponding image points can 
be expressed as: 

1
v c c~ Tx KR R K x Hx−Σ =                     (7) 

 The homography H only involves the constant camera 
intrinsic parameters and camera pose. Thus, all cameras 
under circular motion share the common homography. 
 Substituting equation (7) into equation (4) leads to 

( ) 0212 =×⋅ CC
T
C Hxxe                           (8) 

 Similarly, we can derive the following relation 
( ) 0121 =×⋅ CC

T
C Hxxe                           (9) 

 For any two views under circular motion, a pair of 
correspondence points with two epipoles can provide two 
linear constraints on H according to equation (8) and (9). 
With enough constraints, H can be linearly determined by 
the least-square estimation. 

On the other hand, given the homography H, a silhouette 
can be transformed to its reflected silhouette. Therefore, the 
epipoles of any two views can be determined from the 
bi-tangent lines of one of the silhouettes and the 
transformed silhouette of the other one. 
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Figure 3. The geometry relationship between the circular 
motion and the mirror reflection. 
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Figure 2. (a) The bird’s eye view of the two view geometry 
generate by a plane mirror. (b) Epipole and bi-tangent lines. 
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 In addition, equation (8) can be rewritten as follow: 
 ( ) 0][ 221 =× CC

T
C xHex                       (10) 

Therefore, the fundamental matrix can be expressed as: 
HeF C ×= ][ 2                              (11) 

 The derived equations are similar to those in [9,20]. 
However, the property is derived from the mirror symmetry 
property. Therefore, we have a new observation that the 
epipoles of two views under circular motion can be directly 
located instead of performing one-dimensional search [9]. 

4.3. Homography and image invariants 
With the pole-polar relationship, we can show that 

s xl vω=                                  (12) 

where 1TK Kω − −=  is the image of the absolute conic. 
The homography H derived in the previous section can 

be further used to relate to the image invariants as follow: 

s
T
x

T
sxTT

lv
lvIKrKrIKRKRH 22 1

11
1 −=−=Σ= −−      (13) 

Therefore, if there is knowledge about vx or ls, equation (8) 
and (9) can also be applied to determine the unknown part 
with a linear solution. 

5. Camera Calibration 
In this section, we discuss how to estimate the camera 

parameters by using the proposed property and how to 
determine the focal length under the degenerate case. We 
assume the optical centers coincide with the image centers, 
and the camera intrinsic parameter has only one unknown, 
i.e. the focal length. 

5.1. Recovery of the homography 
If the epipoles are available, the tangent points of 

silhouettes induced by the epipoles are considered as point 
correspondences, and equation (8) and (9) are used to 
compute the homography H. One way to extract the 
epipoles from object silhouettes can be found in [8]. 

If the epipoles are not available, a low-dimensional 
search of the optimal H in a bounded region is performed. 
As given in equation (7), H contains four parameters which 
are focal length, denoted by f, and three rotation angles, 
denoted by θx, θy and θz, respectively, of the camera pose. 
In fact, H is independent of the rotation angle of x-axis 
because of the following relation: 

( ) ( ) Σ=Σ T
xxxx RR θθ                        (14) 

Thus, the number of unknowns of H is reduced to three.  
Under circular motion, all cameras are positioned on the 

same plane, which is Πh as shown in Figure 1(a), and their 
projections, which are epipoles, are co-linear. The 
homography H can hence be determined by minimizing the 

distance from the epipoles to the co-linear line, lh, and the 
cost function is defined as follow: 

( ) ( ) ( )( )
( )
∑

∈

+=
SSS

hjihijzy
ji

ledistledistfCost
 ,

,,,, θθ  (15) 

where the function dist( ) gives the distance from a point to 
a line, the set S contains all silhouette pairs and eab denotes 
the epipole which is the projection of camera Cb onto Ca. 

As described in section 4.2, the epipoles of a pair of 
images can be located from a given H and the epipole 
co-linear line, lh, is computed by a least-square line fitting. 
 Unfortunately, under a given focal length, the error 
function is complex as shown in Figure 4. Figure 4(a) is the 
error function of the rotation angles within +/- 20 degrees 
of the ground truth and Figure 4(b) is that within +/- 1 
degree. Thus, the optimization methods will be easily 
trapped into local minima without very good initialization. 
However, the values of the unknowns can be bounded 
within a reasonable range. The optimal H can be searched 
discretely in a finite parameter spaces. 

In practice, a candidate list of H with the cost smaller 
than a predefined threshold, which can be set to the average 
cost, will be kept because of the noise. The final solution is 
chosen with the smallest error in the epipolar tangency 
constraints, whose detailed description can be found in 
[10]. 

5.2. Recovery of the image invariants 
When the homography H is obtained, the epipoles of a 

pair of views can be determined. The line lh is determined 
via line fitting of epipoles. The line ls is determined via line 
fitting of the intersections of the corresponding epipolar 
lines [8]. The point xs hence can be computed from the 
intersection of lh and ls. The point vx is computed from 
equation (12) given f and ls or from equation (8), (9) and 
(13) when the epipoles are available. 

5.3. Recovery of the focal length 
If the homography H is determined via a bounded-search 

process, the focal length is therefore determined. If it is 
determined via given epipoles, with the recovered image 

    
(a)                                             (b)

Figure 4.The error function of different parameters of H.



 

 

invariants, vx and ls will provide two constraints to the 
image of the absolute conic as expressed in equation (12). 
The focal length can therefore be computed by solving two 
quadratic equations. 

5.4. Recovery of the camera pose 
From equation (2), camera pose R can be computed by 
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 Notice that, the sign of rotation axis has no difference for 
projection to the image coordinates, but back-projection of 
image points will lead to a sign ambiguity. This ambiguity 
can be resolved by back-projecting the epipole, which is 
obtained from images, and checking the sign with the 
corresponding camera position. Finally, the overall optimal 
orthogonalization is done by SVD. 

5.5. Recovery of the rotation angle about Ls 
The inscribed angle theorem of circle states that an 

inscribed angle is exactly half the corresponding central 
angle. As shown in Figure 3(a), we have 

23121 2 CCCCXC s ∠=∠                        (17) 
where C3 is  an arbitrary camera on the circle. 

In this case, the rotation angle about Ls between cameras 
C1 and C2 can be obtained by calculating the angle between 
the back-projection lines of the corresponding epipoles of 
cameras C1 and C2 in the image of camera C3 as follow: 

( )2
1

1
1

231 , eKeKangCCC −−=∠                 (18) 
where e1 and e2 are epipoles of C1 and C2 in the image of C3. 

5.6. Degenerate case 
When the optical axes intersect at one point, the x-axis 

vanishing point, vx, is an infinite point and can not be 
determined from the SoR [9,12,13]. Therefore, the 
constraints arisen from vx, such as equation (12), can not be 
used for determining the focal length. 

 
In addition, in this case, θy is zero, the parameters of H 

will hence be reduced to only one, which is θz. 
( ) ( ) ( ) ( )Tzzzz

T
zzzz RRKRKRH θθθθ Σ=Σ= −1    (19) 

where K = diag(f,f,1) and KRz = RzK. 
 Thus, the focal length will also be eliminated in H. 
 However, from three images, there are constrains on the 
epipoles and the focal length, as shown in Figure 5, thus a 
closed-form solution of the focal length can be derived in 
this case. For the derivation, we introduce some symbol 
definitions. In Figure 5, C1 to C3 are three cameras and Π1 to 
Π3 are their corresponding image planes. The image plane 
is placed at a distance f from the camera center, F is the 
distance from camera center to xs, and eab denotes the 
epipole that is the projection of camera Cb on camera Ca. As 
depicted in Figure 6(b), a, b, c denote the distance from xs 
to e12, e13, and e23, respectively, and d is the distance from xs 
to the image center. In Figure 5, assume the world center is 
placed at circle center Xs in 2D case and the coordinate of 
C1 is [0 –r], the coordinate of C2 and C3 can be expressed 
as: 

])()(,)(2[ 222222
2 FaaFrFaarFC +−+=     (20) 

])()(,)(2[ 222222
3 FbbFrFbbrFC +−+=     (21) 

 Note that Figure 6(a) is the enlarged figure of ∆XPC2 in 
Figure 5. Since ∆XPC2 is similar to ∆QOC2, we have the 
following relationship: 

2 2       : :sQO OC X P PC=                        (22) 
where 

22 2 3
2 2 2, , ,

2s
C CQO c OC F X P r PC PC= = = − =  (23) 

The distance from C2 to C3 can be calculated from 
equation (20) and (21). Also, F is the distance from camera 
center to xs, given by 

22 dfF +=                                (24) 
Therefore, from equation (22), (23) and (24), we can 

derive the closed-form solution for the focal length f by 
using a, b, c and d as follow: 

2)( dabacbcf −−−±=                  (25) 
where f is chosen as the positive solution. 

Figure 5. The geometric relationship among the focal length 
and the epipoles. 
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Figure 6. (a) The enlarged figure of ∆XPC2 (b) The 
relationship among epipoles and image entities. 
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In addition to the case with a rotationally symmetric 
object, another degenerate case occurs when the contact 
points of the epipolar planes with the object lie on the 
rotation axis. In this case, points xc and xv, depicted in 
Figure 2(b), are identical and the derived constraint cannot 
be used. However, this problem can be avoided by putting 
the object away from the rotation axis. The expense is to 
sacrifice image resolution for the object, which is not a 
problem for a high-resolution camera. 

6. Experimental results 
In this section, both synthetic and real data are used to 

evaluate the proposed algorithm. For each test image 
sequence, only the silhouettes, instead of feature 
correspondences, are used for camera calibration. 

6.1. Synthetic data 
In this part, the Stanford bunny model is used to generate 

100 data sets to test the algorithm. The model is projected 
to each image, with the coordinates of all pixels rounded, 
and then the convex hull algorithm is applied to find the 
silhouette. Each test set contains 12 images of size 800x600 
pixels with interval angle 30 degrees. The value of focal 
length and the camera pose are randomly generated. The 
range of f is 1500~5000 pixels, θx is within -10~-50 degrees, 
θy and θz are within -5~5 degrees. For each test, the number 
of images used for the reconstruction is randomly chosen 
from 3 to 6. 

The experimental results are shown in Table 1. In this 
Table, # is the number of images used and Δθi is the 
average error of the interval angles. The errors of angles are 
represented in degrees. The error in focal length is 
computed by taking the focal length difference divided by 
the ground truth. 

For the experiment with the degenerate case, we generate 
another 100 data sets based on the same setting as the 
previous ones except fixing θy to 0 degree. In this 
experiment, the number of images used for reconstruction 
is set to 3 and the estimated results are listed in Table 2. 

6.2. Real data 
In the experiment on real data set, we provide three kinds 

of image sequences. All sequences are sparsely located 
under circular motion and are not suitable for  producing 
SoR. We applied the proposed algorithm to estimate the 
camera parameters and then minimized the epipolar 
tangency constraints [10] for all pairs of views to refine the 
camera parameters. 

The first real-data experiment is on the Fox sequence, 
which contains 12 images of size 640x480 pixels and the 
angle between images is about 30 degrees (may deviate a 
little bit due to mechanical error). Some example views are 

depicted in Figure 7. In this case, the epipoles are first 
determined from the method in [8], and then used to 
compute the homography and the remaining camera 
parameters. Sample views of the reconstructed 3D model 
and the estimated angles are shown in Figure 8 and 9, 
respectively. 

Figure 9. The estimated angles for the Fox sequence.

Figure 8. Different poses of the constructed 3D model.
 

Figure 8. Sample views of the reconstructed Fox model.

  
Figure 7. Example images in the Fox sequence

Table 2. Accuracy of the recovered camera parameters for the 
degenerate case 

 

# err. Δθx (o) Δθy (o) Δθz (o) Δθi (o) Δf (%)
avg. 0.56 0 0.15 1.41 2.87 3
std. 1.03 0 0.36 1.82 4.56 

Table 1. Accuracy of the recovered camera parameters 
 

# err. Δθx (o) Δθy (o) Δθz (o) Δθi (o) Δf (%)
avg. 0.96 0.23 0.84 2.61 5.32 3
std. 1.23 0.49 1.17 5.71 4.86 
avg. 0.86 0.17 0.51 1.49 4.85 4
std. 1.17 0.14 0.58 1.47 4.73 
avg. 0.53 0.13 0.38 1.12 3.98 5
std. 0.51 0.11 0.34 0.73 3.60 
avg. 0.46 0.15 0.43 0.93 3.70 6
std. 0.39 0.13 0.32 0.55 2.89 



 

 

 

 

 
The second experiment is on the crystal apple sequence 

as depicted in Figure 10. Notice that the object is made of 
glass and it is almost impossible to establish feature 
correspondences in this case. In this part, six images of size 
640x480 pixels with different interval angles are chosen. 
The estimated results are shown in Figure 11 and 12. Figure 
12 shows the ground truth angles in black and the 
reconstructed values in white. We can see the estimated 
angles are quite close to the true angles. 

Finally, we show the experiment on the horse sequence 
[11], which contains 14 images of size 640x480 pixels. The 
sequence was taken under an approximately circular 
motion and the rectified step makes this sequence become a 
degenerate case. We chose 3 images, as shown in Figure 13, 
with their optical axes approximately intersecting at a point, 
for reconstruction. The comparison of the estimated focal 
length and the ground truth is listed in Table 3.  

In Table 3, ‘GT’ means the ground truth, ‘Ini.’ is the 
focal length estimated by the proposed method, and ‘Opt.’ 
is the refined focal length estimate after minimizing the 
overall epipolar tangency error. The error of the initial 
estimated focal length is about 5.3% compared to the 
ground truth. Sample views of the reconstructed 3D model 
are shown in Figure 14. Because it is reconstructed from 3 
views only, the results may seem to be rough. In [11], the 
camera intrinsic parameters are obtained from off-line 
calibration. For the proposed method, the camera is 
auto-calibrated. 

6.3. Comparison with Other Methods 
The proposed method is also compared with the methods 

proposed in [10] and [12] in the following experiments. 

 

 

 

 
First, the head image sequence in [10] was used for 

reconstruction. The sample views of the reconstructed 
model and the estimated angles are shown in Figure 15(a) 
and 16, respectively. In [10], the focal length was calibrated 
off-line, while the proposed method auto-calibrated the 
camera. The RMS error of interval angles in [10] is 0.2131o 
and it is 0.1015o by using the proposed method. 
 In addition, we applied the proposed algorithm to four 
example images of the vase sequence that were directly 
clipped from [9] and enlarged to the size of 640x480 pixels. 
The reconstructed model is shown in Figure 15(b) and the 
comparison of the estimated focal length with [12] and the 
ground truth is listed in Table 4. As shown in Table 4, our 
estimated error is about 4% compared to the ground truth. 
Notice that, we only used 4 clipped and enlarged images to 
calibrate the camera instead of the original 18 images used 
in [12]. 
 It is obvious that more correct results could be obtained 
when more views are used. However, our proposed method 
can still work well when only very few sparse views are 
available, while the previous silhouette-based algorithms 
are not feasible for this kind of sequences. 

   
Figure 13. Images chosen from the horse sequence

        

Figure 15. Sample views of the reconstructed (a) Head model 
and (b) Vase model. 

 (a)                                               (b)

Table 3. Comparison of the recovered focal length with the 
ground truth for the degenerate case. 

 

Method GT Proposed Ini. Proposed Opt.
f 684.98 723.29 664.85 

      
Figure 14. Sample views of the reconstructed horse model.

Figure 12. The estimated interval angles between images

Figure 11. Sample views of the reconstructed Apple model.

   
Figure 10. Example images in the crystal apple sequence



 

 

 

 

7. Conclusion 
In this paper, we introduced the concept of mirror 

symmetry property into circular motion and provide a new 
observation that the epipoles can be located directly from 
the silhouettes by using the derived homography under 
circular motion. With this proposed algorithm, the camera 
can be calibrated from the silhouettes of sparse views, 
which can be as small as three, under circular motion. This 
is quite different from the previous silhouette-based 
methods, which need dense (the interval angle smaller than 
20 degrees) and complete (make a turn) image sequences to 
generate SoR. In addition, we derived a closed-form 
solution for focal length under the degenerate case when 
the camera optical axes intersect at one point.  

Experimental results on synthetic and real data sets are 
presented to demonstrate the performance of the proposed 
algorithm. Although the epipoles and the geometry under 
circular motion can be well determined for the 
feature-based methods, the silhouette-based approach has 
its advantage when the feature correspondences could not 
be reliably established, which is very common in practice. 
Previous silhouette-based methods can produce good 
camera calibration results only with dense views. By using 
the proposed algorithm, the camera calibration from 
silhouettes at very sparse views becomes feasible. 
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Table 4. Comparison of the recovered focal length with the 
ground truth and the method by Zhang et al. [12]. 

 

Method GT Zhang et al.[12] Proposed Opt. 
# - 18 4 
f 2389.8 2370.7 2288.4 

 

Figure 16. The estimated interval angles between images.


