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Abstract

In this paper, we present a novel tree-based dynamic
programming (TDP) algorithm for efficient stereo
reconstruction. We employ the geodesic distance
transformation for tree construction, which results in
sound image over-segmentation and can be easily
parallelized on graphic processing unit (GPU). Instead of
building a single tree to convey message in dynamic
programming (DP), we construct multiple trees according
to the image geodesic distance to allow for parallel
message passing in DP. In addition to efficiency
improvement, the proposed algorithm provides visually
sound stereo reconstruction results. Compared with
previous related approaches, our experimental results
demonstrate superior performance of the proposed
algorithm in terms of efficiency and accuracy.

1. Introduction

Stereo matching is one of the most fundamental problems
in computer vision. In the past decade, this problem has
attracted much attention from computer vision researchers,
and they have advanced the state of the art in stereo
matching considerably on pursuit of high quality results.
By wusing the advanced techniques, such as MRF
optimization, image segmentation, visibility reasoning,
robust plane fitting, bilateral filtering, image matting, etc,
integrated stereo algorithms seem to be successful for
solving this well known ill-posed problem. However,
multi-stage algorithms [10,14,17,22] usually not only
suffer from high computational cost but also require
nontrivial parameter settings, making them impractical to
use.

One of the basic requirements for practical stereo
matching solutions is the real-time response. To meet this
requirement, previous efficient algorithms are too simple to
provide satisfactory results. These simple solutions were
usually performed in a single-pass process. Without
multiple stages and/or post-refinement processing, the
qualities of the real-time stereo approaches are generally
incomparable to those of the approaches mentioned above.
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Thanks to the modern hardware development, the use of
GPU provides another possible solution that compromises
the above two extreme approaches. The main challenge
becomes how to take advantage of the current computing
hardware system to achieve real-time computation. Thus
the problem becomes how to transform the sequential
process in the multiple stages of the associated techniques
into a parallel design, so that the advanced stereo matching
algorithm can be implemented on the modern multi-core
systems with high computational efficiency

Motivated by the impacting fact in the semiconductor
society that the well-known Moore’s law [1] was broken
due to the fundamental limitation of the physics, the trend is
to develop practical vision applications on multi-core
hardware devices in the near future. The computer
hardware manufactures started to produce the multi-core
architecture in a chip. For example, Intel Corporation
released its first dual-core CPU in 2006, and the number of
cores has increased to four within the three years. This
tendency is still in progress, and it will continue in the
foreseeable future. To take advantage of this trend, we
devote ourselves to developing a new stereo matching
algorithm, which is designed for running on the multi-core
PC systems.

The dynamic programming (DP) based stereo matching
algorithm, first introduced by Cox [2], successfully
employs the uniqueness constraint and ordering constraint
in the matching problem. The DP optimization can be
performed individually along each scanline, which makes it
very efficient and straightforward. However, the horizontal
streaking effect occurs to the boundary of depth
discontinuity, because the piecewise smoothness constraint
is only enforced along the scanline. To improve this
drawback, Veksler [3] proposed tree-based dynamic
programming (TDP) that applied the DP optimization
through the tree structure constructed by the conventional
minimum spanning tree (MST) algorithm.

To take full advantage of the modern hardware support
on PC, our stereo matching algorithm simultaneously
performs tree construction and disparity estimation through
parallelization on both CPU and GPU. Concurrently, CPU
computes the efficient geodesic distance transformation for
tree construction according to the input image intensity
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Step 1:
Build the minimal spanning
forest

2o

Step 2:
Assign the uncertain nodes into
regions through the geodesic
distance transformation

s

Step 3:
Estimate the disparity in each
individual region via TDP

Figure 1: System flow of the proposed algorithm

content, while GPU takes charge of data cost for each pixel.
After that, we apply enhanced TDP to individual trees for
both of the stereoscopic images and visibility constraint to
obtain the final results. On the PC equipped with AMD
Athlon dual core processor with nVidia GT-9800, the total
execution time for both image segmentation and disparity
estimation of both images can reach up to 6 fps for the
384x288 stereo image pair with 16 disparity levels.

The main contributions of this paper can be briefly
summarized in the following three aspects. First of all, we
propose a parallel tree-based stereco matching algorithm
based on efficient geodesic image segmentation. Secondly,
the proposed algorithm is designed suitably for advanced
multi-core architecture on PC. Last but not least, our
algorithm provides the image segmentation result in
addition to the disparity map estimation, which is done in
near real-time response. Through the experimental results
on both synthetic and real data, we demonstrate that the
estimated disparity map outperforms those of previous
closely related approaches in terms of efficiency and
accuracy.

2. System Overview

The flow diagram of our system is shown in Figurel. The
first step is to construct the minimal spanning forest
according to intensity similarity. In practice, uncertain
pixels in the unexpected small trees may appear due to
inevitable noises. Thus, pixels in these unexpected trees are
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detected and re-assigned to the neighboring reliable regions.
A possible solution [7] is to hierarchically calculate the
mean and standard variance of the tree to decide whether to
merge the two adjacent trees. However, this method is too
time-consuming to meet the real-time response requirement.
We perform the tree merging in one step. The strategy is to
apply the geodesic distance transformation [6] from the
uncertain pixels to the target trees. It is worth noting that
this strategy not only reassigns the uncertain pixels to a
reliable tree with the shortest path, but also preserves a tree
structure to the MST. Finally, we perform an energy
minimization on each local MST by using TDP
optimization.

We divide the task to different computing platforms for
gaining the optimal performance. Our algorithm performs
the computationally intensive operations on GPU by using
CUDA. Concurrently, the remaining operations are
assigned to multi-core CPU. In the beginning, a minimal
spanning forest is constructed. In this process, associating
each pixel to a thread parallelizes the calculation of the
intensity gradient, thus the computation of the weights of
the edges in the MST is performed on GPU. This
information is passed to CPU for constructing the minimal
spanning forest. Geodesic distance is done efficiently by a
two-pass minimum filter on CPU. Meanwhile, the data
terms in the energy function is pre-calculated on GPU. As
the same strategy as intensity gradient calculation, we
associate each pixel to a thread. Hence, in the final step of
our algorithm, i.e. the energy minimization on each local
MST by using tree-based dynamic programming, the
optimization can be executed very fast because the data
terms are already calculated on GPU. This process is
currently implemented on the multi-core CPU by using
OpenMP.

3. Geodesic Tree Construction

We improve the method introduced by Criminisi et al. [6]
to calculate the geodesic distance of the uncertain pixels.
Their method requires the user to provide foreground and
background strokes. Instead, our algorithm automatically
constructs the minimal spanning forest. Pixels in a MST
which depth less than a threshold are marked as uncertain
pixels. These uncertain pixels are reassigned to the
neighboring MSTs according to their geodesic distance.

3.1. Minimal Spanning Forest Construction

We modified Kruskal’s algorithm [8] to construct the
minimal spanning forest. The modified Kruskal’s
algorithm is given as follows:

Algorithm 1. Modified Kruskal’s algorithm




— Initially, we treat each pixel as a separated tree, and
construct the edges, e, of four-connected
neighbors

— For each e;, use GPU to compute the edge weights,

w; , according to the color dissimilarity
Use CUDA radix_sort to sort all the edge weights
in the ascending order and store the ordered
edges in the queue S.
While S ¢
* Pop out ¢; from §
If w; <A
then add e; to connect the two nodes of the

edge.
* Otherwise discard e;

First, we use radix sort [18][19] performed on GPU to
sort the edge weights in an increasing order. By using a
queue, S, to store the sorted edges, we sequentially pop out
the edge from § and check whether it satisfies the criterion
to add the edge to connect the two nodes of the edge by a
user-defined threshold.

3.2. Geodesic Distance Transformation

We improve the method introduced by Criminisi in [6] to
calculate the geodesic distance of the uncertain pixels.
Their method requires the user to provide foreground and
background strokes. Instead, our algorithm automatically
constructs the minimal spanning forest [7]. Pixels in a MST
with depths less than a threshold are marked as uncertain
pixels. These uncertain pixels are reassigned to the
neighboring MSTs according to their geodesic distance.

3.3. Energy Minimization via Tree-based Dynamic
Programming

In each region, we can define its own energy function for
disparity estimation. Similar to the previous work, the
energy function can be defined as

E(D)=).m(d)+A Y. s(d,.d,) (1)

pev (p.q)eE

We optimize this energy function with respect to disparity
map D in the dynamic programming framework as
described in [3]. Here, d, is denoted as a disparity value at
pixel p in the left image, and m(d,) is the matching penalty
for assigning disparity d, to pixel p. For simplicity, it can be
the absolute difference between the pixel p in the left image,
and the pixel p shifted by d, horizontally in the right image.
In this work, we use the sum of modified absolute intensity
differences [9] inside a local window as the matching
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penalty. Here, we use GPU to calculate this part in the
middle of CPU performing geodesic tree construction. In
Eq. (1), s(d,d,) is a smoothness penalty for assigning
disparities d, and d, to p and ¢ which are connected by an
edge in the graph. For the purpose of enforcing the
smoothness constraint, s(d,,d,) should be a monotonically
non-decreasing function defined as

S(dp’dq) = |dp _dq |/(qu *H) @)

where w,, is the edge weight between pixel p and ¢, and p is
a small positive value (set to 107 in our experiments) to
avoid dividing by zero. Instead of setting a fixed constant,
the smoothness penalty is dynamically changed based on
the content, which is similar to [10].

Dynamic programming is a technique that solves an
optimization problem from the solutions of its
sub-problems. Here, we compute the energy function from
leaf nodes through the root node in a tree. Each node v has a
parent node, denoted by p(v), except the root node, and the
minimal energy of the node v is a subset of the graph
consisting of a subtree rooted at v and the edge between v
and p(v), thus it can be written in a recursive form as a
function of d,(v), given by

E, (dp<v>) :gﬂn m(d,)+s(d,.d,. )+ Z E (d)

weC,,

. 0)

where C, is the set of children of node v and H is the set of
all disparity levels considered here. For the leave node,
because it does not have a child, its associated energy
function can be simplified as follows:

Ev (dp(v) ) = gvl:: (m(dv) + S(dv7 dp(v))) (4)

For the root node, it does not have a parent, so its associated
energy function can be written as,

> E, (d,w,)j 5)

weC (root)

Eroot = min (m(dww)'f'

rooteH

From this equation, we know that the disparity at the root
node can be decided directly. Once it is decided, the
disparity of the corresponding child node can be easily
decided by passing the information of the estimated
disparity from the parent node to child node. This process
can be recursively applied to determine the disparities of all
the nodes in a tree. The complexity of this DP process is
O(h’n), where h is the total number of disparity levels, and



n is the total number of nodes. We can reduce the
complexity to O(hn) by simplifying the smoothness penalty
function as follows, which is similar to [20][21]:

0, ifd

o =4,

S(pp(v)’qv): (6)

e Otherwise

Therefore, there are only two choices for the optimal
disparity assignment for v. The first case is when
8(d,),d,)=0, and this leads to the following equation

E, (s(d,,.d)=0)=md)+ Y E,(d) )

wece,,

The second case is when s(d,,d,)#0, and it corresponds to
the following energy function:

E, (s(d d)#+ 0) = m(dvk )+ Z E, (d; )+ const (8)

VVECV*

p(v)°

The disparity value dv* is determined by minimizing

m(d )+ Z E () > thus the final energy equation can

weC

be written as:

E(d,,)=min(E,(s(d

r(v)’?

d)#0),E,(s(d,,.d)=0))
.9

Therefore, the computational complexity can be reduce to
O(hn).

We use OpenMp to perform the energy minimization in
parallel with each thread assigned to a region, and there is
no data interchange between regions during the energy
minimization for each tree.

3.4. Occlusion Handling

Occluded pixels are the crucial pixels that need to be
specially handled, because the pixels visible in one input
image have no corresponding matched pixels in the other
input image. To tackle this problem, we first treat the left
image as the reference image and calculate its disparity map.
Once we have the disparity map, we warp the disparity map
of the right image to the left image view. The pixels without
correspondences after the warping are treated as occluded
pixels for the left image. Thus, the data terms for the
occluded pixels are set to a very small value or zero in the
progress of performing energy minimization.

In addition, we need to handle the pixels in
homogeneous regions in a special way. Most of the time,
the estimated disparities in homogeneous regions are
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incorrect because the associated cost function values are
almost the same for different disparity levels. Hence,
similar to the way of handling the occlusion pixels, we set
the data term for a pixel in a homogeneous region to a very
small value. We use a very simple way to detect
homogeneous pixels by calculating the sum of absolute
intensity differences between neighboring pixels inside a
local window and comparing this value with a threshold.

4. Experiment Result

All of our experiments were performed on a PC equipped
with AMD Athlon 64 X2 Dual core processor 3600+ of
2.01 GHz. The GPU model was nVidia GT-9800 with 112
stream processors.

We applied the proposed algorithm to the Middlebury
datasets [12] to evaluate the performance of our algorithm.
The results are shown in Table 2. There are four parameters
to be set in our algorithm; namely, 7; is the threshold of
discarding the edge in the tree construction, 7, is the
threshold of destroying the trees with depth less than this
value, T; is the threshold for the smoothness constraint, and
T, is the threshold for indicating is a pixel is located in a
homogeneous region. The window size used to calculate
the data term and homogeneous pixel was set to be 7x3.
Table 1 lists the parameter setting for the four datasets.

Table 1. Parameter settings for different image pairs
T, T, T; T, A

50
Tsukuba ,Venus 15 30 10 20
Teddy, Cones 25 70
Compared to the conventional DP-based stereo

algorithm [2], our results were free from streaking effect.
However, we restrict the smoothness penalty to be either
zero or a constant, so that most of the bad pixels occur in
the slant surface, as shown in Figure2.

In Table 2, we list the result of our method to compare
with those of the state-of-the-art quality-oriented methods
[14][17], speed-oriented methods [15][16], and the most
closely related DP-based methods [2][3][10]. First,
compared with the state-of-the-art stereo algorithms, such
as [14][17] listed in the Table 2, they normally take a
couple of minutes to perform iterative multi-stage
refinement to obtain a high quality depths, while our
method is much faster. Second, compared with previous
real-time stereo matching methods, e.g. [15][16], the
proposed algorithm provides the additional image
segmentation result in addition to the disparity map
estimation. At last, we compare our method to the most
related DP-based methods [2][3][10]. Although we observe
that the region-based TDP [10] seems better in terms of
quality, we have to point out that this method requires an
additional over-segmentation algorithm as a preprocessing



Table 2. The quantitative evaluation on Middlebury dataset, numbers in the table indicate average bad pixels over

indicated region. n-occ : non-occlusion region, all : all region, disc : discontinues region.

Tsukuba Venus Teddy Cones

n-occ all disc n-occ all disc n-occ all disc n-occ all disc
DoubleBp[14] 0.83 1.24 4.49 0.10 0.35 1.46 1.41 4.13 4.73 1.71 7.02 5.16
AdaptingBP [17] 0.77 1.31 5.66 0.10 0.18 1.42 1.05 2.00 3.74 1.89 6.42 5.69
RegionTreeDP[10] 1.20 1.43 6.01 0.09 0.30 1.11 4.22 6.09 10.7 2.98 8.10 7.31
RealTimeBP [15] 1.25 3.04 6.66 0.63 1.53 7.68 5.68 8.27 10.2 2.9 9.11 8.27
Our Method 1.52 2.28 7.53 0.58 0.82 3.06 5.15 8.45 11.6 4.24 9.92 10.1
RealTimeGPU[16] 1.34 3.27 7.17 1.02 1.90 124 3.90 8.65 10.4 4.37 10.8 12.3
TreeDP[3] 1.73 2.55 8.82 1.21 1.89 7.35 8.80 17.2 17.2 5.57 14.1 12.5

DP [2] 3.43 4.23 9.85 6.50 7.43 17.4 7.11 17.9 13.4 6.52 15.1 15.1

step as well as a multi-stage refinement process to obtain
the final results, which is much more time consuming
compared to our method.

The proposed algorithm provides a very efficient
segmentation-based stereo matching algorithm, as shown
in Table 3. The segmentation information helps us to
improve the stereo matching accuracy, especially around
the edge region. Our algorithm is practical for applications
that require both disparity estimation and image
segmentation especially when computational speed is a
primary consideration.

Table 3. The execution time for different image pairs.

Segmentation . E.ne.rgy. Total time
minimization
Tsukuba 0.122 sec 0.047 sec 0.169 sec
Venus 0.467 sec 0.110 sec 0.577 sec
Teddy 0.532 sec 0.203 sec 0.735 sec
Cones 0.313 sec 0.218 sec 0.534 sec

We also performed the energy minimization with a
single core to compare the execution time, though
multi-core processors can gain more computational
efficiency because the optimization process is parallelized
in multi-thread framework. Table 4 compares the
computational time required for using single-core and
dual-core CPU for energy minimization.

Table 4. Different running time of energy minimization

with single-core and dual-core CPU.
Single Core Dual Core
Tsukuba 0.078 sec 0.047 sec
Venus 0.157 sec 0.110 sec
Teddy 0.288 sec 0.203 sec
Cones 0.297 sec 0.218 sec

In the last experiment, we apply our algorithm to a stereo
video clip to demonstrate the performance of the proposed
algorithm on real stereo video. The results are shown in
Figure 3.
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5. Conclusions

In this paper, we proposed a geodesic tree-based dynamic
programming algorithm for stereo matching. Multi-tree
structures are constructed based on the image geodesic
distance. The associated energy minimization for each tree
corresponding to a region is performed by DP individually
in parallel. Our experimental results showed the proposed
algorithm can provide good disparity estimation and image
segmentation very efficiently on a CPU+GPU PC system.
As far as we know, the proposed algorithm is the fastest
segmentation-based stereo matching algorithm. It is very
useful for applications that require both the stereo matching
and image segmentation results.

The limitation of our algorithm is confined on the
construction of minimal spanning forest. It is not
completely parallel so far. The other weakness of our
algorithm is the smoothness constraint. Restricted
smoothness penalty in two levels only sacrifices the
accuracy of the stereo matching.

As the future research directions, we plan to investigate a
more elegant way to refine the smoothness constraint such
that the accuracy of stereo matching can be improved and
the corresponding energy function can still be efficiently
minimized with DP. In addition, we plan to develop a truly
parallel algorithm to construct minimal spanning forest.
Furthermore, we are also interested in extending this
technique to further speed up the depth estimation for
stereo videos.
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Figure 3. Experimental results on real data. First row is the original image, second row is the result of our algorithm, different color in
image of third row present different region.
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