
 

 

 
Abstract 

 
In this paper, we present a novel tree-based dynamic 

programming (TDP) algorithm for efficient stereo 
reconstruction. We employ the geodesic distance 
transformation for tree construction, which results in 
sound image over-segmentation and can be easily 
parallelized on graphic processing unit (GPU). Instead of 
building a single tree to convey message in dynamic 
programming (DP), we construct multiple trees according 
to the image geodesic distance to allow for parallel 
message passing in DP. In addition to efficiency 
improvement, the proposed algorithm provides visually 
sound stereo reconstruction results. Compared with 
previous related approaches, our experimental results 
demonstrate superior performance of the proposed 
algorithm in terms of efficiency and accuracy. 

1. Introduction 
Stereo matching is one of the most fundamental problems 
in computer vision. In the past decade, this problem has 
attracted much attention from computer vision researchers, 
and they have advanced the state of the art in stereo 
matching considerably on pursuit of high quality results. 
By using the advanced techniques, such as MRF 
optimization, image segmentation, visibility reasoning, 
robust plane fitting, bilateral filtering, image matting, etc, 
integrated stereo algorithms seem to be successful for 
solving this well known ill-posed problem. However, 
multi-stage algorithms [10,14,17,22] usually not only 
suffer from high computational cost but also require 
nontrivial parameter settings, making them impractical to 
use.  

One of the basic requirements for practical stereo 
matching solutions is the real-time response. To meet this 
requirement, previous efficient algorithms are too simple to 
provide satisfactory results. These simple solutions were 
usually performed in a single-pass process. Without 
multiple stages and/or post-refinement processing, the 
qualities of the real-time stereo approaches are generally 
incomparable to those of the approaches mentioned above.  

Thanks to the modern hardware development, the use of 
GPU provides another possible solution that compromises 
the above two extreme approaches. The main challenge 
becomes how to take advantage of the current computing 
hardware system to achieve real-time computation. Thus 
the problem becomes how to transform the sequential 
process in the multiple stages of the associated techniques 
into a parallel design, so that the advanced stereo matching 
algorithm can be implemented on the modern multi-core 
systems with high computational efficiency   

Motivated by the impacting fact in the semiconductor 
society that the well-known Moore’s law [1] was broken 
due to the fundamental limitation of the physics, the trend is 
to develop practical vision applications on multi-core 
hardware devices in the near future. The computer 
hardware manufactures started to produce the multi-core 
architecture in a chip. For example, Intel Corporation 
released its first dual-core CPU in 2006, and the number of 
cores has increased to four within the three years. This 
tendency is still in progress, and it will continue in the 
foreseeable future. To take advantage of this trend, we 
devote ourselves to developing a new stereo matching 
algorithm, which is designed for running on the multi-core 
PC systems. 

The dynamic programming (DP) based stereo matching 
algorithm, first introduced by Cox [2], successfully 
employs the uniqueness constraint and ordering constraint 
in the matching problem. The DP optimization can be 
performed individually along each scanline, which makes it 
very efficient and straightforward. However, the horizontal 
streaking effect occurs to the boundary of depth 
discontinuity, because the piecewise smoothness constraint 
is only enforced along the scanline. To improve this 
drawback, Veksler [3] proposed tree-based dynamic 
programming (TDP) that applied the DP optimization 
through the tree structure constructed by the conventional 
minimum spanning tree (MST) algorithm. 

To take full advantage of the modern hardware support 
on PC, our stereo matching algorithm simultaneously 
performs tree construction and disparity estimation through 
parallelization on both CPU and GPU. Concurrently, CPU 
computes the efficient geodesic distance transformation for 
tree construction according to the input image intensity 
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content, while GPU takes charge of data cost for each pixel. 
After that, we apply enhanced TDP to individual trees for 
both of the stereoscopic images and visibility constraint to 
obtain the final results. On the PC equipped with AMD 
Athlon dual core processor with nVidia GT-9800, the total 
execution time for both image segmentation and disparity 
estimation of both images can reach up to 6 fps for the 
384x288 stereo image pair with 16 disparity levels.  

The main contributions of this paper can be briefly 
summarized in the following three aspects. First of all, we 
propose a parallel tree-based stereo matching algorithm 
based on efficient geodesic image segmentation. Secondly, 
the proposed algorithm is designed suitably for advanced 
multi-core architecture on PC. Last but not least, our 
algorithm provides the image segmentation result in 
addition to the disparity map estimation, which is done in 
near real-time response. Through the experimental results 
on both synthetic and real data, we demonstrate that the 
estimated disparity map outperforms those of previous 
closely related approaches in terms of efficiency and 
accuracy. 

2. System Overview  

The flow diagram of our system is shown in Figure1. The 
first step is to construct the minimal spanning forest 
according to intensity similarity. In practice, uncertain 
pixels in the unexpected small trees may appear due to 
inevitable noises. Thus, pixels in these unexpected trees are 

detected and re-assigned to the neighboring reliable regions. 
A possible solution [7] is to hierarchically calculate the 
mean and standard variance of the tree to decide whether to 
merge the two adjacent trees. However, this method is too 
time-consuming to meet the real-time response requirement. 
We perform the tree merging in one step. The strategy is to 
apply the geodesic distance transformation [6] from the 
uncertain pixels to the target trees. It is worth noting that 
this strategy not only reassigns the uncertain pixels to a 
reliable tree with the shortest path, but also preserves a tree 
structure to the MST. Finally, we perform an energy 
minimization on each local MST by using TDP 
optimization. 

We divide the task to different computing platforms for 
gaining the optimal performance. Our algorithm performs 
the computationally intensive operations on GPU by using 
CUDA. Concurrently, the remaining operations are 
assigned to multi-core CPU. In the beginning, a minimal 
spanning forest is constructed. In this process, associating 
each pixel to a thread parallelizes the calculation of the 
intensity gradient, thus the computation of the weights of 
the edges in the MST is performed on GPU. This 
information is passed to CPU for constructing the minimal 
spanning forest. Geodesic distance is done efficiently by a 
two-pass minimum filter on CPU. Meanwhile, the data 
terms in the energy function is pre-calculated on GPU. As 
the same strategy as intensity gradient calculation, we 
associate each pixel to a thread. Hence, in the final step of 
our algorithm, i.e. the energy minimization on each local 
MST by using tree-based dynamic programming, the 
optimization can be executed very fast because the data 
terms are already calculated on GPU. This process is 
currently implemented on the multi-core CPU by using 
OpenMP. 

3. Geodesic Tree Construction  
We improve the method introduced by Criminisi et al. [6] 
to calculate the geodesic distance of the uncertain pixels. 
Their method requires the user to provide foreground and 
background strokes. Instead, our algorithm automatically 
constructs the minimal spanning forest. Pixels in a MST 
which depth less than a threshold are marked as uncertain 
pixels. These uncertain pixels are reassigned to the 
neighboring MSTs according to their geodesic distance. 

3.1. Minimal Spanning Forest Construction 
We modified Kruskal’s algorithm [8] to construct the 
minimal spanning forest. The modified Kruskal’s 
algorithm is given as follows: 
 

Algorithm 1. Modified Kruskal’s algorithm 

Figure 1: System flow of the proposed algorithm  

802



 

 

� Initially, we treat each pixel as a separated tree, and 
construct the edges, ei, of four-connected 
neighbors  

� For each ei, use GPU to compute the edge weights, 
wi , according to the color dissimilarity   

� Use CUDA radix_sort  to sort all the edge weights 
in the ascending order and store the ordered 
edges in the queue S. 

� While ��S   
• Pop out ei from S 
• If  i ��w   

then add ei to connect the two nodes of the 
edge. 

• Otherwise discard ei 
 

 
First, we use radix sort [18][19] performed on GPU to 

sort the edge weights in an increasing order. By using a 
queue, S, to store the sorted edges, we sequentially pop out 
the edge from S and check whether it satisfies the criterion 
to add the edge to connect the two nodes of the edge by a 
user-defined threshold.  

3.2. Geodesic Distance Transformation 
We improve the method introduced by Criminisi in [6] to 
calculate the geodesic distance of the uncertain pixels. 
Their method requires the user to provide foreground and 
background strokes. Instead, our algorithm automatically 
constructs the minimal spanning forest [7]. Pixels in a MST 
with depths less than a threshold are marked as uncertain 
pixels. These uncertain pixels are reassigned to the 
neighboring MSTs according to their geodesic distance. 

3.3. Energy Minimization via Tree-based Dynamic 
Programming  

In each region, we can define its own energy function for 
disparity estimation. Similar to the previous work, the 
energy function can be defined as 
 

 
( , )

( ) ( ) ( , )p p q
p v p q E

E D m d s d d�
� �

� �	 	  

  We optimize this energy function with respect to disparity 
map D in the dynamic programming framework as 
described in [3]. Here, dp is denoted as a disparity value at 
pixel p in the left image, and m(dp) is the matching penalty 
for assigning disparity dp to pixel p. For simplicity, it can be 
the absolute difference between the pixel p in the left image, 
and the pixel p shifted by dp horizontally in the right image. 
In this work, we use the sum of modified absolute intensity 
differences [9] inside a local window as the matching 

penalty. Here, we use GPU to calculate this part in the 
middle of CPU performing geodesic tree construction. In 
Eq. (1), s(dp,dq) is a smoothness penalty for assigning 
disparities dp and dq to p and q which are connected by an 
edge in the graph. For the purpose of enforcing the 
smoothness constraint, s(dp,dq) should be a monotonically 
non-decreasing function defined as 

 
( , ) ( )p q p q pqs d d d d w 
� � �  

 
where wpq is the edge weight between pixel p and q, and μ is 
a small positive value (set to 10-5 in our experiments) to 
avoid dividing by zero. Instead of setting a fixed constant, 
the smoothness penalty is dynamically changed based on 
the content, which is similar to [10]. 

Dynamic programming is a technique that solves an 
optimization problem from the solutions of its 
sub-problems. Here, we compute the energy function from 
leaf nodes through the root node in a tree. Each node v has a 
parent node, denoted by p(v), except the root node, and the 
minimal energy of the node v is a subset of the graph 
consisting of a subtree rooted at v and the edge between v 
and p(v), thus it can be written in a recursive form as a 
function of dp(v), given by 
 

� 
( ) ( )min ( ) ( , ) ( )
v H

v p v v v p v w v
v

d w C
E d m d s d d E d

� �
� � �

� �
� �
� �

	
 … (3) 

 
where Cv is the set of children of node v and H is the set of 
all disparity levels considered here. For the leave node, 
because it does not have a child, its associated energy 
function can be simplified as follows: 
 

� 
 � 
( ) ( )min ( ) ( , )v
v H

p v v v p vd
E d m d s d d

�
� �          (4) 

 
For the root node, it does not have a parent, so its associated 
energy function can be written as, 
 

( )

min ( ) ( )rootroot w root
w C rootroot Hd

E m d E d
��

� �� �
� �
� �

	         (5) 

 
From this equation, we know that the disparity at the root 
node can be decided directly. Once it is decided, the 
disparity of the corresponding child node can be easily 
decided by passing the information of the estimated 
disparity from the parent node to child node. This process 
can be recursively applied to determine the disparities of all 
the nodes in a tree. The complexity of this DP process is 
O(h2n), where h is the total number of disparity levels, and 

(1)

(2)

803



 

 

n is the total number of nodes. We can reduce the 
complexity to O(hn) by simplifying the smoothness penalty 
function as follows, which is similar to [20][21]: 
 

� 
 ( )

( )
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0,           if  
,

  otherwise

p v v

p v v
p v v

d d
s p q

w

�
�
��
�
��

            (6) 

 
Therefore, there are only two choices for the optimal 
disparity assignment for v. The first case is when 
s(dp(v),dv)=0, and this leads to the following equation 
 

� 
( )( , ) 0 ( ) ( )v p v v v w v
vw c

E s d d m d E d
�

� � � 	           (7) 

 
The second case is when s(dp,dv)�0, and it corresponds to 
the following energy function: 
 

� 
 * *( )
*
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The disparity value *vd  is determined by minimizing 

	
�

�
*

)()( **
vCw

vwv dEdm  , thus  the final energy equation can 

be written as: 
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Therefore, the computational complexity can be reduce to 
O(hn). 

We use OpenMp to perform the energy minimization in 
parallel with each thread assigned to a region, and there is 
no data interchange between regions during the energy 
minimization for each tree. 

 
3.4. Occlusion Handling 
Occluded pixels are the crucial pixels that need to be 
specially handled, because the pixels visible in one input 
image have no corresponding matched pixels in the other 
input image. To tackle this problem, we first treat the left 
image as the reference image and calculate its disparity map. 
Once we have the disparity map, we warp the disparity map 
of the right image to the left image view. The pixels without 
correspondences after the warping are treated as occluded 
pixels for the left image. Thus, the data terms for the 
occluded pixels are set to a very small value or zero in the 
progress of performing energy minimization. 

In addition, we need to handle the pixels in 
homogeneous regions in a special way. Most of the time, 
the estimated disparities in homogeneous regions are 

incorrect because the associated cost function values are 
almost the same for different disparity levels. Hence, 
similar to the way of handling the occlusion pixels, we set 
the data term for a pixel in a homogeneous region to a very 
small value. We use a very simple way to detect 
homogeneous pixels by calculating the sum of absolute 
intensity differences between neighboring pixels inside a 
local window and comparing this value with a threshold. 

4. Experiment Result  
All of our experiments were performed on a PC equipped 
with AMD Athlon 64 X2 Dual core processor 3600+ of 
2.01 GHz. The GPU model was nVidia GT-9800 with 112 
stream processors. 

We applied the proposed algorithm to the Middlebury 
datasets [12] to evaluate the performance of our algorithm. 
The results are shown in Table 2. There are four parameters 
to be set in our algorithm; namely, T1 is the threshold of 
discarding the edge in the tree construction, T2 is the 
threshold of destroying the trees with depth less than this 
value, T3 is the threshold for the smoothness constraint, and 
T4 is the threshold for indicating is a pixel is located in a 
homogeneous region. The window size used to calculate 
the data term and homogeneous pixel was set to be 7x3. 
Table 1 lists the parameter setting for the four datasets.  
 

Table 1. Parameter settings for different image pairs 
 T1 T2 T3 T4 � 

Tsukuba ,Venus 15 30 
50 

10 20 
Teddy, Cones 25 70 

 
Compared to the conventional DP-based stereo 

algorithm [2], our results were free from streaking effect. 
However, we restrict the smoothness penalty to be either 
zero or a constant, so that most of the bad pixels occur in 
the slant surface, as shown in Figure2.  

In Table 2, we list the result of our method to compare 
with those of the state-of-the-art quality-oriented methods 
[14][17], speed-oriented methods [15][16], and the most 
closely related DP-based methods [2][3][10]. First, 
compared with the state-of-the-art stereo algorithms, such 
as [14][17] listed in the Table 2, they normally take a 
couple of minutes to perform iterative multi-stage 
refinement to obtain a high quality depths, while our 
method is much faster. Second, compared with previous 
real-time stereo matching methods, e.g. [15][16], the 
proposed algorithm provides the additional image 
segmentation result in addition to the disparity map 
estimation. At last, we compare our method to the most 
related DP-based methods [2][3][10]. Although we observe 
that the region-based TDP [10] seems better in terms of 
quality, we have to point out that this method requires an 
additional over-segmentation algorithm as a preprocessing 
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step as well as a multi-stage refinement process to obtain 
the final results, which is much more time consuming 
compared to our method. 

The proposed algorithm provides a very efficient 
segmentation-based stereo matching algorithm, as shown 
in Table 3. The segmentation information helps us to 
improve the stereo matching accuracy, especially around 
the edge region. Our algorithm is practical for applications 
that require both disparity estimation and image 
segmentation especially when computational speed is a 
primary consideration. 
 

Table 3. The execution time for different image pairs. 
 Segmentation Energy 

minimization Total time 

Tsukuba 0.122 sec 0.047 sec 0.169 sec
Venus 0.467 sec 0.110 sec 0.577 sec
Teddy 0.532 sec 0.203 sec 0.735 sec
Cones 0.313 sec 0.218 sec 0.534 sec

 
We also performed the energy minimization with a 

single core to compare the execution time, though 
multi-core processors can gain more computational 
efficiency because the optimization process is parallelized 
in multi-thread framework. Table 4 compares the 
computational time required for using single-core and 
dual–core CPU for energy minimization.   

 
Table 4. Different running time of energy minimization 
with single-core  and dual-core CPU. 

 Single Core Dual Core 
Tsukuba 0.078 sec 0.047 sec
Venus 0.157 sec 0.110 sec
Teddy 0.288 sec 0.203 sec
Cones 0.297 sec 0.218 sec

 
In the last experiment, we apply our algorithm to a stereo 

video clip to demonstrate the performance of the proposed 
algorithm on real stereo video. The results are shown in 
Figure 3.  

5. Conclusions  
In this paper, we proposed a geodesic tree-based dynamic 
programming algorithm for stereo matching. Multi-tree 
structures are constructed based on the image geodesic 
distance. The associated energy minimization for each tree 
corresponding to a region is performed by DP individually 
in parallel. Our experimental results showed the proposed 
algorithm can provide good disparity estimation and image 
segmentation very efficiently on a CPU+GPU PC system. 
As far as we know, the proposed algorithm is the fastest 
segmentation-based stereo matching algorithm. It is very 
useful for applications that require both the stereo matching 
and image segmentation results.  

The limitation of our algorithm is confined on the 
construction of minimal spanning forest. It is not 
completely parallel so far. The other weakness of our 
algorithm is the smoothness constraint. Restricted 
smoothness penalty in two levels only sacrifices the 
accuracy of the stereo matching. 

As the future research directions, we plan to investigate a 
more elegant way to refine the smoothness constraint such 
that the accuracy of stereo matching can be improved and 
the corresponding energy function can still be efficiently 
minimized with DP. In addition, we plan to develop a truly 
parallel algorithm to construct minimal spanning forest. 
Furthermore, we are also interested in extending this 
technique to further speed up the depth estimation for 
stereo videos. 
 
Acknowledgments: This study is conducted under the “III 
Innovative and Prospective Technologies Project” of the Institute 
for Information Industry which is subsidized by the Ministry of 
Economy Affairs of the Republic of China.  

References 
[1] C. E. Leiserson and I. B. Mirman. How to survive the 

multicore software revolution. In CILK ARTS, 2008.  

Table 2. The quantitative evaluation on Middlebury dataset, numbers in the table indicate average bad pixels over 
indicated region. n-occ : non-occlusion region, all : all region, disc : discontinues region.  

 Tsukuba Venus Teddy Cones 
n-occ all disc n-occ all disc n-occ all disc n-occ all disc 

DoubleBp[14] 0.83 1.24 4.49 0.10 0.35 1.46 1.41 4.13 4.73 1.71 7.02 5.16
AdaptingBP [17] 0.77 1.31 5.66 0.10 0.18 1.42 1.05 2.00 3.74 1.89 6.42 5.69

RegionTreeDP[10] 1.20 1.43 6.01 0.09 0.30 1.11 4.22 6.09 10.7 2.98 8.10 7.31
RealTimeBP [15] 1.25 3.04 6.66 0.63 1.53 7.68 5.68 8.27 10.2 2.9 9.11 8.27

Our Method 1.52 2.28 7.53 0.58 0.82 3.06 5.15 8.45 11.6 4.24 9.92 10.1
RealTimeGPU[16] 1.34 3.27 7.17 1.02 1.90 12.4 3.90 8.65 10.4 4.37 10.8 12.3

TreeDP[3] 1.73 2.55 8.82 1.21 1.89 7.35 8.80 17.2 17.2 5.57 14.1 12.5
DP [2] 3.43 4.23 9.85 6.50 7.43 17.4 7.11 17.9 13.4 6.52 15.1 15.1

805



 

 

[2] I. Cox, S. Hingorani, S. Rao, and B. Maggs. A maximum 
likelihood stereo algorithm. In Computer Vision, Graphics 
and Image Processing, 63(3): 542-567, 1996. 

[3] O. Veksler. Stereo correspondence by dynamic 
Programming on a tree. In CVPR, 2005. 

[4] nVidia. NVIDIA CUDA Programming Guide 2.2. 2008. 
[5] The OpenMP API Specification for Parallel Programming:  

http://openmp.org/  
[6] A. Criminisi, T. Sharp, and A. Blake. GeoS: geodesic image 

segmentation. In ECCV, 2008.  
[7] O. Grygorash, Y. Zhou, and Z. Jorgensen. Minimum 

spanning tree based clustering algorithms. In ICTAI, 2006.  
[8] T. Cormen, C. Leiserson, and R. Rivest. Introduction to 

Algorithms. MIT Press, 1990.  
[9] S. Birchfield and C. Tomasi. A pixel dissimilarity measure 

that is insensitive to image sampling. IEEE TPAMI, 20: 
401-406, 1998. 

[10] C. Lei, J. Selzer, and Y.-H. Yang. Region–tree based stereo 
using dynamic programming optimization. In CVPR, 2006. 

[11] M. Gong and Y. H. Yang. Fast stereo matching using 
reliability-based dynamic programming and consistency 
constraints. In ICCV, 2003.  

[12] Middlebury Stereo Vision Page:  
http://vision.middlebury.edu/stereo/  

[13] V. Kolmogorov and R. Zabih. Multi-camera scene 
reconstruction via graph cuts. In ECCV, 2002.  

[14] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. 
Stereo matching with color-weighted correlation, 
hierarchical belief propagation, and occlusion handling.  In 
CVPR, 2006.  

[15] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér. 
Real-time global stereo matching using hierarchical belief 
propagation. In BMVC, 2006.  

                       (a)                                             (b)                                        (c)                                                  (d) 
Figure 2. Experimental results on synthetic data on Middlebury dataset. (a) column is the original image, different color in 
image of column(b) present different region, (c) column is the result of our algorithm, (d) column is the result of bad pixel.   

806



 

 

[16] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nistér. 
High-quality real-time stereo using adaptive cost 
aggregation and dynamic programming. In 3DPVT, 2006.  

[17] A. Klaus, M. Sormann and K. Karner. Segment-based stereo 
matching using belief propagation and a self-adapting 
dissimilarity measure. In ICPR, 2006.  

[18] G. E. Blelloch. Prefix sum and their application. In Technical 
Report CMU-CS-90-190, School of Computer Science, 
Carnegie Mellon University, 1990.  

[19] N. Satish, M. Harris and M. Garland. Designing efficient 
sorting algorithms for manycore GPUs. In IEEE Proc. Int’l 
Parallel and Distributed Processing Symposium, 2009. 

[20] P. Felzenszwalb and D. Huttenlocher. Efficient belief 
propagation for early vision.  IJCV, 70: 41-54, 2006.  

[21] A. Brunton, C. Shu, and G. Roth. Belief propagation on the 
GPU for stereo vision. In CRV, 2006. 

[22] M. Bleyer, M. Gelautz, C. Rother, and C. Rhemann. A stereo 
approach that handles the matting problem via image 
warping. In CVPR, 2009.  
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Figure 3. Experimental results on real data. First  row is the original image, second row is the result of our algorithm, different color in 
image of  third row  present different region.  
 

807


