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Abstract. In this paper, we propose a novel over-segmentation based
method for the detection of foreground objects from a surveillance video
by integrating techniques of background modeling and Markov Random
Fields classification. Firstly, we introduce a fast affinity propagation clus-
tering algorithm to produce the over-segmentation of a reference image
by taking into account color difference and spatial relationship between
pixels. A background model is learned by using Gaussian Mixture Models
with color features of the segments to represent the time-varying back-
ground scene. Next, each segment is treated as a node in a Markov Ran-
dom Field and assigned a state of foreground, shadow and background,
which is determined by using hierarchical belief propagation. The rela-
tionship between neighboring regions is also considered to ensure spatial
coherence of segments. Finally, we demonstrate experimental results on
several image sequences to show the effectiveness and robustness of the
proposed method.

1 Introduction

Extracting foreground objects from image sequences is a critical task for many
computer vision applications, such as video processing, visual surveillance and
object recognition. Background subtraction is a core component for video surveil-
lance, whose objective is to discriminate the foreground from the background
scene. To achieve this goal, a robust background modeling technique is essen-
tial. The basic idea of background modeling is to maintain an estimation of the
background image model which represents the scene with no foreground objects.
Then, moving objects can be detected by a simple subtraction and thresholding
procedure. Hence, the more accurate the background model, the more accurate
is the detection of the foreground objects.

Most traditional background modeling techniques are pixel-based, and they
usually estimate the probability of the individual pixels belonging to background
by using GMMs [1] or to label each pixel as foreground or background by MRFs
[2]. However, pixel-based models are less efficient and effective in handling illu-
mination change and dynamic scene such as swaying vegetation, waving trees,
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fluttering flags, and so on. Even though the background is static, camera jit-
tering and signal noise may still cause non-stationary problems. Several block-
based methods were developed to overcome such problems, which partition a
background image into sub-blocks to utilize block correlation [3] or to compute
block-specific features, such as local binary pattern histograms [4]. However, the
fix-sized blocks often fail to correctly classify the foreground objects because
they are not well fitted to object boundaries, which also results in inaccurate
shape of the detected foreground objects.

Motivated by the above issues, we propose a novel over-segmentation based
approach for foreground objects detection in this paper. Unlike pixel-based or
block-based methods, the proposed method exploits the observation that neigh-
boring pixels are very likely to have the same foreground or background classifi-
cation if they are appropriately grouped together according to certain similarity
measure. Despite the simplicity of dividing an image into blocks, the subdivided
regions usually do not fit to the object boundaries well. We thus propose a fast
and effective affinity propagation algorithm to obtain the over-segmentation of
a background image to facilitate the task of background modeling. By consid-
ering color and spatial coherence of neighboring pixels, the proposed method is
capable of handling illumination change in a scene effectively. In the following
foreground/background classification stage, we produce the over-segmentation
of various resolutions on the reference image to form a hierarchy of MRFs and
each segment is treated as a node. Hierarchical belief propagation [5] is then
utilized to label the MRFs.

Fig. 1 illustrates the flowchart of the proposed background modeling and
foreground detection system. In the training phase, an reference background
image is selected and its over-segmentation is produced by performing fast AP
clustering algorithm. Based on the over-segmented image, the background mod-
els are learned via GMMs and a hierarchy of MRFs is constructed. Foreground
object detection is accomplished through MRF classification by hierarchical be-
lief propagation when new images are acquired from a test sequence and the
corresponding background models are updated accordingly.

The rest of this paper is organized as follows. In Section 2, we first briefly
review the related work. Then, the over-segmentation based background model-
ing method is introduced in Section 3. In Section 4, the detection of foreground
objects by MRFs classification is described. In Section 5, we show some exper-
imental results and quantitative comparisons to demonstrate the superior per-
formance of the proposed method over previous methods. Section 6 concludes
this paper.

2 Related Work

Many approaches for background subtraction have been proposed over the past
decades, but they usually differ in the ways of modeling the background. Most
of them can be classified as pixel-based approaches. A well-known method by
Grimson and Stauffer [1] proposed to use GMMs for background modeling. Tt
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Fig. 1. System flowchart.

describes each pixel as a mixture of Gaussians and updates the models adap-
tively according to the input image sequence. Zivkovic proposed an improved
GMM learning algorithm that estimates the parameters of the GMM and si-
multaneously selects the number of Gaussians [6]. Elgammal et al. introduced
nonparametric estimation method for per-pixel background modeling [7]. They
utilized a general nonparametric kernel density estimation technique for building
a statistical representation of the background scene.

Spatial and temporal neighboring relationships of pixels are useful informa-
tion for object segmentation. In [2], Paragios and Ramesh proposed a MRF-based
method to deal with change detection for subway monitoring. Migdal and Grim-
son adopted MRF's to model spatial and temporal relationship of neighborhood
pixels [8]. Wang et al. [9] introduced dynamic CRFs for foreground object and
moving shadow segmentation in indoor video scene. An approximate filtering al-
gorithm is exploited to update parameters of CRF models according to previous
frames. Huang et al. [10] proposed a region-based motion segmentation algo-
rithm to obtain motion-coherence regions. Both spatial and temporal coherence
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of regions are taken into account to maintain the continuity of segmentation by
using MRFs.

Recently, several block-based methods were developed for background mod-
eling and subtraction to more effectively deal with illumination change and
dynamic scenes. Generally, block-based algorithms start by dividing a back-
ground image into blocks and construct the background models by calculating
block-specific features extracted from these blocks. In [3], the correlation be-
tween blocks is measured by the normalized vector distance to realize robust
background subtraction against varying illumination. Heikkila and Pietikinen
[4] proposed to model the background scene based on Local Binary Pattern
(LBP) histogram and produce coarse detection of foreground object. However,
the LBP histogram cannot capture temporal variation in the pattern. Following
[4], Chen et al. proposed a contrast histogram measure to describe each block
and performed object detection by combining a pixel-level GMMs and block-wise
contrast descriptors [11].

Cast shadows are difficult to be correctly detected by most background sub-
traction methods. It is often misclassified as the foreground region, resulting in
inaccurate object shapes and the degradation of model updating. Shadow de-
tection techniques can be classified into two groups: model-based and property-
based techniques. Model-based techniques rely on models representing the prior
knowledge of the geometry of the scene or objects, and the illumination [12].
Property-based techniques identify shadows by using features, such as bright-
ness [13,14], geometry [15] or texture [16].

3 Over-segmentation Based Background Modeling

To enable the background model to more effectively handle changes occurred
in the scene, it is preferable to divide a background scene into sub-regions and
learn the background models accordingly. To this end, we propose a simple and
efficient affinity propagation clustering algorithm to over-segment a reference im-
age I'r among an input sequence before the background model learning process.
Furthermore, a hierarchy of over-segmentation built over I is constructed to
facilitate the following foreground object detection by MRF classification (Sec-
tion 4). In this work, we adopt GMMs [1] as underlying the background models,
which are trained for both pixel and segmentation level.

Affinity propagation (AP) [17] is an iterative algorithm that groups data
points into clusters by sending messages between data points. The pairwise sim-
ilarity s(i, k), which measures how well-suited data point k is to be the exemplar
(i.e. cluster center) for data point ¢, is taken as input and AP aims to search
for a number of clusters such that the net similarity is maximized. Unlike other
clustering techniques, such as the k-means clustering that needs the number of
clusters to be explicitly specified, AP takes for each data point k a preference
value s(k,k) as input that indicates a candidate exemplar’s potential of being
chosen as an exemplar. Exemplars emerge during the process of message passing
and the number of identified exemplars depends on the input preference values.
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There are two kinds of messages to be updated during each iteration, i.e. respon-
sibility and availability, and each accounts for a different kind of competition.
Briefly speaking, responsibility update lets all candidate exemplars compete for
ownership of a data point while availability update collects evidence from data
points reflecting the competence of each candidate exemplar. The message up-
dating procedures are summarized in Algorithm 1.

Algorithm 1 Affinity propagation
Initialization:
r(i,k) =0, a(k,i) =0 for all 7, k
Responsibility updating:
r(i, k) + s(i, k) — Ei};{a(]’, i)+ s(i,7)}
Availability updating:
a(k, k) < Y max{0, r(j,k)}
J:j#k
a(k,i) < min{0, r(k, k) + Z max{0, r(j,k)}}
g:i¢{k,i}
Exemplar assignments:
c; < arg max r(i, k) + a(k, 1)

The messages are directional. The responsibility (i, k), sent from data point ¢
to candidate exemplar k, delivers the accumulated evidence for how well-suited
it is to assign point ¢ to point k, by considering other potential exemplars’
competition for point i. The availability a(k,?), sent from candidate exemplar k
to point 4, delivers the accumulated evidence for how appropriate it would be for
point ¢ to choose point k as its exemplar, by considering the aggregate support
of choosing point k£ to be an exemplar from other points. After convergence,
availabilities and responsibilities can be combined to identify exemplars. For
point 4, it is assigned to the exemplar ¢; that maximizes r(i, k) + a(k, 7).

In the application of image over-segmentation, neighboring pixels of similar
color are grouped together and each pixel competes for exemplarship by ex-
changing messages with each other. One drawback of AP clustering is its high
complexity of message updating, which is O(NN?) if each pixel sends messages to
all the other pixels. To achieve efficiency, we exploit the assumption that distant
pixels are not possible to be assigned to the same exemplar and thus message
exchange between pixels far away is not necessary. To further reduce the amount
of messages, we take advantage of a set of virtual exemplars, which are respon-
sible for competing for pixels, to form the over-segmentation. We do not define
pixel-to-pixel similarity since the image pixels are no longer candidates of exem-
plars to form the final segmentation. Therefore, the amount of messages to be
updated is greatly reduced, leading to an efficient algorithm.

Following the convention of AP, we define the following negative real-valued
similarity measure between a pixel p and its nearby virtual exemplar v, taking
into account color difference and spatial relationship
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Fig. 2. Over-segmenting a reference image from 8 x 8 regular grid by our fast AP clus-
tering algorithm. (a) original image (b) 8 x 8 regular grid image (c) AP based clustering
algorithm with 1 iteration (d) AP-based clustering algorithm with 3 iterations (e)final
over-segmentation image from AP-based clustering algorithm

s(p,v) = —(Aellep _cv||2+>‘5||up_uv||2)7 (1)

where A, and A, are weighting coefficients to balance the two terms. Initially,
we obtain an initial over-segmentation by partitioning the input image into a
regular grid consisting of fix-sized blocks, e.g. 8 x 8, and associate each block
with a virtual exemplar. The mean color ¢, and position u,, of each block are then
computed for the associated v for message computation. Each pixel only sends
messages to the virtual exemplars with the corresponding segments connected
to each other. The message updating procedure of AP remains unchanged. After
each iteration of AP clustering, the pixels assigned to each segment vary and
the exemplar attributes u, and c, are updated accordingly. Generally, 5~10
iterations suffice to obtain good segmentation results in our experiments.

4 Markov Random Fields for Classification

4.1 Energy Minimization

In this paper, we formulate the foreground/background classification problem
as labeling a MRF with each node corresponding to a pixel or segment in an
image. Let S = {s1, 82, ..., 85} be the set of nodes in a graph G and £ be the
set of edges with (s;,s;) € € indicating that there is an edge connecting s; and
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s;. We aim to find an optimal configuration Q2 of G that assigns a label [; €
{foreground, background, shadow} for node s; such that the following energy
function is minimized:

E(Q) = Z Wikelihood(li) + « Z V:z)rior(liv lj)a (2)

5;€S (si,s5)€E

where « is a weighting coefficient. The energy function E({2) is the sum of two
terms: likelihood energy Viiketihood and prior energy Vprior. The likelihood term
Viikelihooa measures the likelihood that a node s; is classified as one of its three
possible states and is composed of the weighted combination of two terms: color
distortion V¢ and gain information V&:

Viiketinooa(li) = A Y VOl + (1 =) Y VI(l). (3)

$; €S s;€S

Color distortion V¢ is the angle between the color vectors associated with
a node s; in the current observed image and the corresponding background
model. Note that if s; corresponds to a segment, the average color vector is used
to compute V¢ to measure the similarity with its corresponding background
model. The gain information V¢ was designed to handle cast shadow based on
the observation that shadow regions are expected to possess lower luminance
but similar chromaticity values [14]. It is calculated by the ratio between the
brightness change over the corresponding background model,

I, — 1
Iy

gain = (4)
where I, and I, are the average intensity of background model and the observed
region, respectively. The variation of intensity in the shadow regions due to
illumination changes should be relatively small.

Let R; and R? be the colors corresponding to the ith pixels and mean color
for segment case in an observed image F, and background image Fj, respectively.
V¢ and V& terms are defined as follows:

c _ {1 — exp(—fea(Ri, R?)) if 1; = background

Viy= 5
() exp(—fea(Ri, RY)) otherwise ®)

a {1 — exp(— fgain(Ri, R?)) if l; = background, shadow ()

Vi =
() exp(—fgain(Ri, RY)) otherwise

where f.q and fyqn are functions to calculate color distortion and gain infor-
mation between R; and Ré’, respectively. The definition for f.q and fgqin can be
formed by:

T
fea(m,n) = arccos(m) (7)

|7
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Pixel Layer

Fig. 3. (a) Hierarchical MRFs built over pixel and segmentation levels. (b) Example
of hierarchical over-segmentation.

I, — I
Fyain(ToyT) = == (8)
b

where m and n are two input of color vectors.

The prior energy Vprior captures the spatial continuity between neighboring
pixels or segments. It introduces more penalty if two neighboring regions with
small color distortion are assigned different labels. Let R; and R; be the pixels
or segments corresponding two connected nodes s; and s; in G. We thus define
Virior as follows,

_ J1—exp(—fea(Ris Ry)), if li #l;
V;Jrior - { O’d ’Lf liJZ lj- J (9)

4.2 Hierarchical belief propagation optimization over MRFs

After the MRF is built, belief propagation (BP) algorithm is employed to find
the optimal label assignment of each node by minimizing the energy function
defined in Equation (2). In this work, we build a hierarchy of MRFs on both pixel
and segmentation levels. By using the proposed fast AP clustering algorithm,
we over-segment the reference background image with various initial block sizes.
As shown in Fig. 3, a segment in the over-segmented image is viewed as a node
in the MRF model. A segment in a coarser level is obtained by merging some
neighboring segments in the next finer level. Therefore, we can easily build a
hierarchical MRF structure from finest level to coarsest level as shown in Fig. 3.

We exploit the hierarchical BP algorithm [5] to solve the optimization prob-
lem defined in the last subsection. The messages at the coarsest level are ini-
tialized as zero and the messages after convergence at each level are passed to
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(c) (d) (e)

Fig.4. A coarse to fine foreground and shadow detection results by our proposed
method from “campus” image sequence. (a) original image (b) frame 65 of “campus”
image sequence. (c)~(e) show our foreground and shadow detection results from coarse
to fine

the successive finer level as the initial guesses for BP message updating. Fig. 4
shows an example of coarse-to-fine foreground and shadow detection by hierar-
chical MRF classification.

5 Experimental Results

To evaluate the performance of the proposed over-segmentation based back-
ground subtraction, three image sequences from public domain are adopted as
benchmark.

The three sequences are “campus”, “intelligent room” and “hall monitor-
ing”, which are taken from various types of scenes, such as outdoor and indoor
environments, to demonstrate the robustness of the proposed method. Fig. 6
compares the results by the proposed method to those by [6] and [14]. Obvi-
ously, the foreground objects, such as the moving car and pedestrians in the
campus sequence, detected by our method is more accurate than previous meth-
ods. In hall monitoring sequence, the proposed method is more robust against
the noise due to light fluctuation. Cast shadows caused by the foreground objects
are also detected well in all test sequences.

To provide quantitative evaluation, we use the similarity measure presented
by Li et al. [18] in this paper. Let A be a detected region and B be the cor-
responding ground truth. The similarity measure between A and B is defined
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Fig. 5. Quantitative comparison between different methods in the three static scene
sequences.

as ANB

S(A,B) = —/——=
S(A, B) reaches its maximal value of 1 if A and B is exactly the same. Otherwise,
S(A, B) fluctuates between 0 to 1 depending on their overlapped regions. The
ground truth data are obtained from public domain and the residuals are marked
manually. The quantitative comparisons shown in Fig. 5 indicates the superior
performance of the proposed method over the previous methods.

(10)

6 Conclusion

In this paper, a new over-segmentation based background modeling algorithm is
presented for foreground and shadow segmentation. The proposed method uses
a fast AP clustering algorithm to obtain image over-segmentation of various
resolutions. The foreground/background classification is then formulated as an
energy minimization problem over the MRF's constructed on the segmented im-
age by using hierarchical belief propagation. Experimental results on several test
sequences and quantitative analysis show that the proposed method performs
well for foreground object extraction and cast shadow detection.
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a) Campus

b) Intelligent room
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Fig. 6. Some background subtraction results of different methods. The white and gray
pixels indicate the detected foreground and shadow regions. First column: original
image. Second column: the results by Zivkovic [6]. Third column: the results by Zeng
[14]. The right-most column: the results by the proposed method.



