3D Non-rigid Registration for MPU Implicit Surfaces

Tung-Ying Lee and Shang-Hong Lai \{tylee, lai\}@cs.nthu.edu.tw
National Tsing Hua University, Hsinchu, Taiwan

CVPR Workshop on NORDIA

Outline

- Rigid and non-rigid registration
- Implicit Surface and MPU Implicits
- Previous work
- Our proposed method
- Experimental results
- Conclusion and Future work

Rigid registration

- Rigid registration
- To find the transformation (rotation and translation) between two very similar models or different poses of the same model

A cartoon bone

Non-rigid registration

- For two models which are deformed versions of the other
- More degree of freedom is required to represent this deformation.

3D Object representation

- Many sources of 3D models
- Range Scanner
- Existing object databases
- Mechanical parts
- Medical images (volume data)
- Different kinds of object representations
- Point sets/point clouds
- Triangular meshes
- Implicit surfaces

Implicit Surface

- A function F
- A surface S can be defined by " $F(x, y, z)=c$
- For example,
- Sphere:
- $F(x, y, z)=x^{2}+y^{2}+z^{2}-4=0$
- Hyperbolic paraboloid:
- $F(x, y, z)=x^{2}-y^{2}-z=0$
- Many classes of implicit surfaces
- metaball surfaces (Blobby)
- Variational implicit surfaces
- Multi-level partition of unity implicits (MPU implicit surface)
(MPU) Y. Ohtake, et al. Multi-level partition of unity implicits. In SIGGRAPH 2003.

MPU Implicits

- MPU is an error controlled mechanism of creating implicit surfaces. (Ohtake et al.)
- Octree subdivision
- Fitting of local shap
- Smooth blending.

$$
f(\mathbf{x})=\frac{\sum_{i} \omega_{i}(\mathbf{x}) f_{i}(\mathbf{x})}{\sum_{i} \omega_{i}(\mathbf{x})}
$$

MPU Implicits

- Local shape function
- A quadric
- A quadratic polynomial
- A piecewise quadratic polynomial

Quadrics in 3D:
Ellipsoid, paraboloid, ...
spheres, cones, cylinders, ...
$\mathrm{Q}(x, y, z)=$
Octree
$\mathrm{Ax}{ }^{2}+\mathrm{By}^{2}+\mathrm{Cz}^{2}+\mathrm{Dxy}+\mathrm{Eyz}+\mathrm{Fx} z+\mathrm{Gx}+\mathrm{Hy}+\mathrm{Iz}+\mathrm{J}_{8}$

Implicit surfaces
 and non-rigid registration

- Advantages of IS
- It can reconstruct surface from range scans and incomplete point data.
- The functional operations, like offsetting and twisting, can be applied to the implicit function easily.
- Additional advantages of MPU
- Error-controlled framework
- The value of the signed distance function at a point can be evaluated rapidly.
- Some applications: Surface recovery [14], shape completion [15]
- Applications of Registration
- Reconstructing a complex model from 3D point sets of different views
- Building a statistical model requires dense correspondence.

Previous work

- Non-rigid registration on two mesh models (Allen et al. [3], Amberg et al. [4])
- Apply an affine transformation to each point
- Non-rigid registration in implicit spaces (Paragios et al. [5], Huang et al. [6])
- Sampling points on the space to achieve freeform deformation
- Cannot be directly applied to implicit surface representation
- Registration and integration of variational implicit surfaces (Claes et al. [7])
- This method only handles rigid registration

Our proposed approach

Our approach

- Based on MPU framework
- Apply an affine transformation for each box
- Combine affine transformations by partition of unity
- Solve the affine parameters by energy-minimization
- Features
- Non-rigid registration between two implicit surface models
- Directly applied to implicit surfaces

Correspondence issue in our approach

- Correspondence between boxes
- The two models are assumed registered roughly.
- One cell \boldsymbol{C} in source implicit surface corresponds to a cell corr(C) in target implicit surface
- Split the cell in the octree if needed

Blending affine transformations

- Continuity of transformed models
- MPU: Blend all implicits f_{i} with the weighting function w_{i}

$$
f(\mathbf{x})=\frac{\sum_{i} \omega_{i}(\mathbf{x}) f_{i}(\mathbf{x})}{\sum_{i} \omega_{i}(\mathbf{x})}
$$

- Our method: Blend all transformed implicits with the corresponding affine p_{i}

$$
\operatorname{doform}(\mathbf{x})=\frac{\sum_{i} w_{i}\left(p_{i}^{-1}(\mathbf{x})\right) f_{i}\left(p_{i}^{-1}(\mathbf{x})\right)}{\sum_{i} w_{i}\left(p_{i}^{-1}(\mathbf{x})\right)}
$$

Energy-Minimization Formulation

- The energy consists of two parts

$$
E=\alpha E_{d a t a}+E_{s}
$$

- Data energy
- Smoothness energy
α : constants

Data Energy

Data energy

- The difference of signed distance function
- integration over the range of the cell in the source model

$$
E_{d a t a}=\sum_{i} \int\left\|Q_{\text {corr }(i)}^{T}(p(\mathbf{x}))-Q_{i}^{S}(\mathbf{x})\right\|^{2} d \mathbf{x}
$$

Quadrics

$$
Q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c
$$

Affine transformation

$$
p(\mathbf{x})=\mathbf{K} \mathbf{x}+\mathbf{h}
$$

\mathbf{A} is a symmetric 3×3 matrix, \mathbf{b} is a 3×1 matrix, and c is a constant \mathbf{K} is a 3×3 matrix and \mathbf{h} is a 3×1 vector

Data Energy (cont'd)

$$
E_{\text {datat }}=\sum_{i} \int \mid Q_{\text {ourri(i) }}^{r}(p(\mathbf{x}))-Q_{i}^{S}(\mathbf{x}) \|^{2} d \mathbf{x}
$$

-S: source IS
-T: target IS
-corr: correspondence between source and target IS

Point \boldsymbol{x} in $S \rightarrow$ Point $\boldsymbol{p}(\boldsymbol{x})$ in T

Smoothness energy

- Smoothness energy
- Make the deformation smooth

$$
E_{s}=\sum_{(i, j) \in A C} \gamma\left\|\mathbf{K}_{i}-\mathbf{K}_{j}\right\|_{F}^{2}+\delta\left\|\mathbf{h}_{i}-\mathbf{h}_{j}\right\|_{F}^{2}
$$

AC is the set of adjacent pairs.
$(a, b),(a, c)$, and (a, d) are in the set AC.
The adjacent cells of a are b, c, and d.

Optimization

- Minimize the energy

$$
E=\alpha E_{d a t a}+E_{s}
$$

- Gradient descent method
\circ The gradient w.r.t $\left\{\mathbf{K}_{1}, \mathbf{h}_{1}, \mathbf{K}_{2}, \ldots\right\}$ must be evaluated.
- The gradient of this energy can be derived in a closed form, because the local shape function is a quadric.

Data energy gradient

$$
\begin{gathered}
E=\alpha E_{\text {data }}+E_{s} \\
\text { Diff }=\left\|Q_{\text {corr }(i)}^{T}(p(\mathbf{x}))-Q_{i}^{S}(\mathbf{x})\right\|^{2} \\
\frac{\partial}{\partial K_{i}} E_{\text {data }}=\int_{\text {celli }} \frac{\partial D i f f}{\partial \mathbf{K}_{i}} d \mathbf{x} \\
\frac{\partial D i f f}{\partial \mathbf{K}_{i}}=2\left(\frac{\partial Q_{\text {corr }(i)}}{\partial \mathbf{K}_{i}} \int\left(Q_{\text {corr(i) }}^{T}-Q_{i}^{S}(\mathbf{x})\right)\right. \\
\frac{\partial Q_{\text {corr(i) }}^{T}}{\partial \mathbf{K}_{i}}=\left(2 \mathbf{A}_{\text {corr }(i)}^{T} \mathbf{K}_{i} \mathbf{x x}^{T}\right)+\left(\mathbf{A}_{\text {corr }(i)}^{T} \mathbf{h}_{i}+\mathbf{b}_{\text {corr }(i)}^{T}\right) \mathbf{x}^{T}
\end{gathered}
$$

A, b : the parameters of quadrics

Smoothness energy gradient

$$
\left\{\begin{array}{c}
\frac{\partial}{\partial \mathbf{K}_{i}} E_{s}(\gamma, \delta)=\sum_{(i, j) \in A C} 2 \gamma\left(\mathbf{K}_{i}-\mathbf{K}_{j}\right) \\
\frac{\partial}{\partial \mathbf{h}_{i}} E_{s}(\gamma, \delta)=\sum_{(i, j) \in A C} 2 \delta\left(\mathbf{h}_{i}-\mathbf{h}_{j}\right)
\end{array}\right.
$$

Approximation for integration

- The partial derivatives of K_{i} involve integration over the i th cell.

$$
\frac{\partial}{\partial K_{i}} E_{\text {datat }}=\int_{\text {celli }} \frac{\partial D i f f}{\partial \mathbf{K}_{i}} d \mathbf{x}
$$

- We can approximate the integration by discrete method, but we have the formula for the partial derivatives.

$$
\begin{aligned}
& \frac{\partial D i f f}{\partial \mathbf{K}_{i}}=2\left(\frac{\partial Q_{\text {cor }(i)}^{T}}{\partial \mathbf{K}_{i}}\right)\left(Q_{\text {corr(i) }}^{T}-Q_{i}^{S}(\mathbf{x})\right) \\
& \frac{\partial Q_{c o r(i)}^{T}}{\partial \mathbf{K}_{i}}=\left(2 \mathbf{A}_{\text {corr }(i)}^{T} \mathbf{K}_{i} \mathbf{x x}^{T}\right)+\left(\mathbf{A}_{\operatorname{corr}(i)}^{T} \mathbf{h}_{i}+\mathbf{b}_{\text {corr }(i)}^{T}\right) \mathbf{k}^{T}
\end{aligned}
$$

Experimental results (1)

Source \& Target

- Geometric objects
- Open surfaces
- (Initial)
- Before registration

Average distance error: 0.0895

- (Transformed: green)
- After registration

Average distance error: 0.0297

Experimental results (2)

Source \& Target

- Geometric objects
- Open surfaces
- (Initial)
- Before registration

Average distance error: 0.1398
o (Transformed: green)

- After registration

Average distance error: 0.0304

Experimental results (3)

Source \& Target

- Geometric objects
- Closed surfaces
- (Initial)
- Before registration
- (Transformed: green)
- After registration

Average distance error: 0.049

Average distance error: 0.0184

Experimental results (4)

Source \& Target

- Human organs
- Liver
- (Initial)
- Before registration
- (Transformed: green)
- After registration

Average distance error: 7.3192

Average distance error: 1.975

Experimental results (5)

Source \& Target

- Sculpture models
- Bunny

- (Initial)
- Before registration
- (Transformed: green)
- After registration

Average distance error: 0.0769

Average distance error: 0.0279

Conclusion and Future work

- A new 3D non-rigid registration algorithm for implicit surfaces is proposed.
- We do not sample points for registering two implicit surfaces.
- The continuous deformation function is determined by the proposed algorithm in an energy minimization framework.
- In the future, we would like to combine registration and generation of implicit surfaces in a unified framework.

Thank you!

