Orientation Trees for Volume and
Surface Reconstruction
from Unoriented Point Clouds

i-Ling Chen! Bing-Yu Chen? Shang-Hong Lai! Tomoyuki Nishita3

INational Tsing Hua University, Taiwan
’National Taiwan University, Taiwan
3The University of Tokyo, Japan

Outline

Introduction & motivations
Related work

Binary orientation trees

Volume and surface reconstruction
Discussions and conclusion

Motivations

e Hierarchical space partitioning structures are

extensively exploited in various research fields.
— Octrees,

— K-d trees,

— Binary space partitioning (BSP) trees.

e Partition the space to produce a collection of subsets

of the data satisfying a given criterion.
— Lacking of additional semantic information.

Introduction

e QOrientation vs. Visibility
— Basic idea: when observing a 3D model, the exterior region
is while the interior region is ().
— The in/out information is very helpful to determine the

orientation w.r.t the 3D model.
e Binary orientation tree (BOT)
— Hierarchical space partitioning structure (Octree-like)

— Roughly splits the 3D space into inside/outside parts w.r.t.

a 3D model. (the exterior region)

Related Work

e Surface reconstruction
— Algebraic surface [Taubin*91][Taubin‘93]
— Level set methods [zhao et al.<00][Zhao et al.<01]
— Radial basis functions [Turk et al.©99][Carr et al.<01][Dinh et al.*02]
— Moving least-squares [Dey and Sun‘05][Lipman et al.’07][Kolluri ‘053]
— Partition-of-unity based approaches
e Octree [Ohtake et al.c03][Xie et al.‘04][Gois et al.’08]

e BSP tree [Tobor et al.<04]
e And much more!
e Most of them require orientation information.

‘Related Work

e To construct the characteristic/indicator function of
a shape defined by the point samples.
(one/inside and zero/outside)

Most of them require surface normals

S 0 0

COriented points Indicator gradient Indicator function Surface

Ve Vitas oy oM

Related Work

e QOrientation propagation
[Hoppe et al.’92][Xie et al.”03][Pauly et al.’03][Guennebaud et
al.’07][Huang et al.”’09]

— Traversing a built over a point set.
— Vulnerable against non-uniform sampling, sharp features
or close-by surface patches.

11

ST T e T

Unoriented normal vectors Oriented normal vectors
7

Related Work

e Active contour based method [Xie et al.’04]
— Region-growing (in/out regions).
— Voting for orientation determination.
— Computationally expensive.

Seed

e Cone Carving [Shalom et al.”10]

— Create a apexed at a sample point that
extends beyond the outward direction to carve out the
outside space.

— Capable of dealing with missing data.

— Computationally expensive.

Binary Orientation Tree (BOT)

e A hierarchical data structure
— Givena unoriented point set,
e Octree-based space partitioning.
— “Binary Orientation”?

It point

10

Binary Orientation Tree (BOT)

e Basic idea
— Points not belonging to the input point set are either
ol ”or” ” when viewed from outside.
— Directly obtain the tags without building the surface of the
input point cloud by

Hidden Point Removal operator.
Katz et al. Direct Visibility of Point Sets.
In Proc. of SIGGRAPH 2007.

Hidden Point Removal

e Hidden Point Removal (HPR) operator
— determines the visible points in a point cloud as viewed
from a given viewpoint.

Figure |: Input to the operator — Are the objects looking forwards

ik babkwania? Figure 2: Output of the operator - They are heading backwards!

Hidden Point Removal

. Pi

pi = f(pi) = pi+2(R—||pil|) —F.
e Easy to compute Pl | pil
— Transform the point cloud P to P’ by

— Compute of P’ and C (viewpoint)

1
d-’ |
.

- "
A ™ o

s

HPR can not deal with ,which disocclude
the interior part of the point clouds.

N'l
Figure 3: HPR Operator — Left: spherical flipping (in red) of a 2D
curve (in blue) using a sphere (in green) centered at the view point

{(in magenta). Right: back projection of the convex hull. Note that
this image is used only for illustration; in practice, R is much lareer.

Definition 3.1 A point p; € P is marked visible from C if its in-
verted point p; lies on the convex hull of P\ J{C}.

Building Binary Orientation Tree

e Building Binary Orientation Tree

(&)
— Perform standard octree subdivision on the input point
cloud.
— Tagging of cell corners.
e Tagging (&)

— Growing of mono-oriented region (from outside).
e Start from the root cell with all corners tagged as out.
e Propagate the tags to the connected empty cells.
— Carving of bi-oriented regions
e Determine the tags of bi-oriented cells (non-empty
cells) by visibility check.

Building Binary Orientation Tree

e Growing
— Recursive back-tracing

tag_tree(C)
begin

! .. X
C" + all leaves containing tagged corners of C;

if C 1s not leaf and not traced then
for all cells Cjqf 1n ¢ do
call back_tracing(C.,¢);
end for
end if
if C 1s not leaf then
for all subcells Cy,,;, of C do
call tag_tree(Cy,p);
end for
end if
end

back_tracing(C)
begin
call tag_corners_if_empty(C);
if C 18 not leaf then
set C as tfraced;
for all subcell Cy,,;, of C do
call tag_corners_if_empty(Cy,):
end for
end if
if C 1s not root then
Cparent +— parent cell of C;
call back_tracing(Cparent);
end if
end

Building Binary Orientation Tree

e Carving

— Collect the input point set P and untagged corners P’.

— Iteratively view (P and P’) by HPR with various viewpoints.

- “ ” the visible points among P’ and tag them as
out.

— Terminate if no out points can be detected.

— Tag the rest points in P’ as in (ideally, they are always
occluded by P).

Partitioning (Octree Subdivision)

Unoriented cell

Growing

Unoriented cell

Mono-oriented
cell (out)

+H+
+
L +
*Pe
°
[J
. [)
° °
°
® o
® [}
bd °
° o
° °
°
°
°
Peo® @0
+H+
++
+H+

18

Carving

Bi-oriented cell

Mono-oriented
cell (out)

Mono-oriented
cell (in)

++
+
+L+ +
0. -
o-l- o +
o |~ '5"
o
o [}
o _|_ -—- O
- =[-% 4+
° o
[) ’Q
® |- - - - -0
@ == - - - -0
o []
.“Q 00
+H+ H+ [+
+|+
+|+

19

Outlier Detection

e QObservation:
— Qutliers are sparse and disorderly distributed, and thus
can hardly occlude the nearby corners.
— The outliers will be “enveloped” in cells with all corners
identically tagged (out).
° During the rn+nc1'r||r1'inr] of BOT

+ +H+ +
— Qu pllswif o o iy
+ +H+ +
tag enclog+ #+ _ _+
..0 . o 0..)
— Req, . algorit, ® | ° | L in/out
lab Y o® e®® © ®

T il

700 outliers

21

500 outliers

QOutlier Detection

Outlier Detection

: 2 conta 0dels are ve % D 13
. by & £ b= J . @ @ . . . - . =
After 1°t round of tagging, 759 After 2" round of tagging, the

outliers detected (total 8oo outliers) remaining 41 outliers are detected.

22

Volume Reconstruction

e Conceptually, the in/out information stored in a BOT
is the same to the volume data also represented by
octrees.

23

= AT N
e ll‘-;ﬁ?. iy

Surface Reconstruction

e Reconstruct MPU implicit surfaces [Ohtake et al.<03] from

unoriented points.

— Octree-based adaptive approximation.

— Take advantage of the tagged BOT corners as
to orientate the local implicit surfaces.

Reconstructed MPU impIicAiﬂt,surfaces by BOTs

Orientation Determination

e Globally consistent orientation of normal fields

— Traditional approaches (Minimal spanning tree)

[Hoppe et al.“92][Guennebaud and Gross‘07][Huang et al. 09]
— Orientate the unoriented normal vectors by BOT tags.

o Y
\o.\ \o\

~o ‘::o
N 3 iV Ik AN

Unoriented normal field

Oriented normal field by BOT

Compared with [Huang et al. 2009]

Globally consistent
normal estimation

Splating with back-
culling enabled.

Results

e Computation time
— A subset of a dense point set is sufficient for visibility

check.

— Compute for visibility checks.
Data Sets Point # | Particles# | Tagging | MPU
TORUS 4,800 3,591 0.188 [.844
DINOSAUR | 36,988 22,301 2.891 1.985
RABBIT 67,038 17,408 [.391 3.406
SANTA 75.781 17,572 1.765 | 5.266
[GEA 134,345 32,940 2.547 6.828

(Represented in seconds)

27

Discussions

» Visual space carving does not resolve everything.

e Limitation 1: incomplete point sets

Growmg tagedlsa bled”

28

Discussions

» Visual space carving does not resolve everything.

Limitation 2: concave region

(Lemma 4.3 [Katz et al.’07])
Points on concave regions may
not be correctly handled by HPR.
The local curvature must be

sufficiently low.

29

Conclusion

e Binary Orientation Tree
— Easy to implement
— Efficient to compute
— Useful for many geometric modeling and processing
problems.

e Future directions
— Handling of incomplete point sets.

— More robust space carving (concave regions).
— Embedding other useful metadata other than in/out tags.

30

Thank you for your attention!

