
Yi-Ling Chen1 Bing-Yu Chen2 Shang-Hong Lai1 Tomoyuki Nishita3

Binary Orientation Trees for Volume and 
Surface Reconstruction 

from Unoriented Point Clouds

1National Tsing Hua University, Taiwan
2National Taiwan University, Taiwan

3The University of Tokyo, Japan

1



• Introduction & motivations

• Related work

• Binary orientation trees

• Volume and surface reconstruction

• Discussions and conclusion

Outline

2



Motivations

• Hierarchical space partitioning structures are 
extensively exploited in various research fields.
– Octrees, 
– K-d trees, 
– Binary space partitioning (BSP) trees.

• Partition the space to produce a collection of subsets 
of the data satisfying a given criterion.
– Lacking of additional semantic information.

3



• Orientation vs. Visibility

– Basic idea: when observing a 3D model, the exterior region 

is visible while the interior region is occluded (invisible).

– The in/out information is very helpful to determine the 

orientation w.r.t the 3D model.

• Binary orientation tree (BOT)

– Hierarchical space partitioning structure (Octree-like)

– Roughly splits the 3D space into inside/outside parts w.r.t. 

a 3D model. (visually carve out the exterior region)

Introduction

4



• Surface reconstruction

– Algebraic surface [Taubin‘91][Taubin‘93]

– Level set methods [Zhao et al.‘00][Zhao et al.‘01]

– Radial basis functions [Turk et al.‘99][Carr et al.‘01][Dinh et al.‘02]

– Moving least-squares [Dey and Sun‘05][Lipman et al.’07][Kolluri ‘05]

– Partition-of-unity based approaches

• Octree [Ohtake et al.‘03][Xie et al.‘04][Gois et al.’08]

• BSP tree [Tobor et al.‘04]

• And much more!

• Most of them require orientation information.

Related Work

5



Related Work

• To construct the characteristic/indicator function of 
a shape defined by the point samples.
(one/inside and zero/outside)
– Poisson equations [Kazhdan et al.‘06]

– FFT [Kazhdan ‘05]

– Wavelets [Manson et al.‘06]

– Generalized eigenvalue problem [Alliez et al.‘07]

6

Most of them require surface normals

6



Related Work

• Orientation propagation 
[Hoppe et al.’92][Xie et al.’03][Pauly et al.’03][Guennebaud et 

al.’07][Huang et al.’09]

– Traversing a minimal spanning tree built over a point set.
– Vulnerable against non-uniform sampling, sharp features 

or close-by surface patches.

7

Unoriented normal vectors Oriented normal vectors



Related Work

• Active contour based method [Xie et al.’04]

– Region-growing (in/out regions).
– Voting for orientation determination.
– Computationally expensive.

8

Seed

Region



Related Work

• Cone Carving [Shalom et al.’10]

– Create a visibility cone apexed at a sample point that 
extends beyond the outward direction to carve out the 
outside space.

– Capable of dealing with missing data.
– Computationally expensive.

9



Binary Orientation Tree (BOT)

• A hierarchical data structure
– Given a complete unoriented point set,

• Octree-based space partitioning.
– “Binary Orientation”? 

• The corners of each cell are associated with a tag 
indicating their in/out relationship w.r.t the input point 
cloud.

10



Binary Orientation Tree (BOT)

• Basic idea
– Points not belonging to the input point set are either 

“visible (out)” or “invisible (in)” when viewed from outside.
– Directly obtain the tags without building the surface of the 

input point cloud by visibility check.

Hidden Point Removal operator.

Katz et al. Direct Visibility of Point Sets. 

In Proc. of SIGGRAPH 2007.

11



Hidden Point Removal

• Hidden Point Removal (HPR) operator
– determines the visible points in a point cloud as viewed 

from a given viewpoint.

12



Hidden Point Removal

• Easy to compute
– Transform the point cloud P to P’ by spherical flipping.
– Compute convex hull of P’ and C (viewpoint)

HPR can not deal with holes, which disocclude
the interior part of the point clouds.

13



Building Binary Orientation Tree

• Building Binary Orientation Tree 
(Partitioning & Tagging)
– Perform standard octree subdivision on the input point 

cloud.
– Tagging of cell corners.

• Tagging (Growing & Carving)
– Growing of mono-oriented region (from outside).

• Start from the root cell with all corners tagged as out.
• Propagate the tags to the connected empty cells.

– Carving of bi-oriented regions
• Determine the tags of bi-oriented cells (non-empty 

cells) by visibility check.
14



• Growing
– Recursive back-tracing

Building Binary Orientation Tree

15



Building Binary Orientation Tree

• Carving
– Collect the input point set P and untagged corners P’.
– Iteratively view (P and P’) by HPR with various viewpoints.
– “Carve out” the visible points among P’ and tag them as 

out.
– Terminate if no out points can be detected.
– Tag the rest points in P’ as in (ideally, they are always 

occluded by P). 

16



Partitioning (Octree Subdivision)

Unoriented cell 

17



Growing
+ +

+ +
+ +

+ +
+ +

+ +
+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +
+ +

+ +

+ +

+
+

+ + +

+

+ +

+

+

Mono-oriented 
cell (out)

Unoriented cell 

18



Carving
+ +

+ +
+ +

+ +

+ +
+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +
+ +

+ +

+ +

+ +

+
+

+ +

+

+ +

+

++

+ +

+
+

+
+

+ + + +

++

+
+

+
+

-

--

-

-

-

-

-

-

- -

-- -

- -

- -

- -- --

Mono-oriented 
cell (in)

-

Mono-oriented 
cell (out)

Bi-oriented cell 

19



Outlier Detection

• Observation:
– Outliers are sparse and disorderly distributed, and thus 

can hardly occlude the nearby corners.
– The outliers will be “enveloped” in cells with all corners 

identically tagged (out).

• During the construction of BOT
– Query the non-empty cells with all corners identically 

tagged and remove the enclosed points (outliers).
– Re-perform the tagging algorithm to obtain correct in/out 

labeling.

20

+ +

++

+ +

++

++

+ +
++

++
+ +

++



Outlier Detection

21

500 outliers 700 outliers



Outlier Detection

22

After 1st round of tagging, 759 
outliers detected (total 800 outliers)

After 2nd round of tagging, the 
remaining 41 outliers are detected.

Active contour models are very likely to fail 
to reach the real data points due to the 

interference of outliers.



• Conceptually, the in/out information stored in a BOT 
is the same to the volume data also represented by 
octrees.
– Directly computed from a raw point set.
– Can be adaptively refined (by using the input point set).
– Combine with the Marching Cubes algorithm or other 

volume reconstruction algorithms [Kobbelt et al.’01][Ju et 

al.’02][Ho et al.’05][Kazhdan et al.’07].

Volume Reconstruction

23



Surface Reconstruction

• Reconstruct MPU implicit surfaces [Ohtake et al.‘03] from
unoriented points.
– Octree-based adaptive approximation.
– Take advantage of the tagged BOT corners as auxiliary 

points to orientate the local implicit surfaces.

24
Reconstructed MPU implicit surfaces by BOTs



Orientation Determination

25

• Globally consistent orientation of normal fields
– Traditional approaches (Minimal spanning tree)

[Hoppe et al.‘92][Guennebaud and Gross‘07][Huang et al.‘09]

– Orientate the unoriented normal vectors by BOT tags.

Unoriented normal field Oriented normal field by BOT



Compared with [Huang et al. 2009]

Globally consistent 
normal estimation

Splating with back-
culling enabled.



Results

• Computation time
– A subset of a dense point set is sufficient for visibility 

check.
– Compute particles for visibility checks.

27

(Represented in seconds)



• Visual space carving does not resolve everything.

• Limitation 1: incomplete point sets

Discussions

28

Growing stage disabled



• Visual space carving does not resolve everything.

Discussions

29

Limitation 2: concave region
(Lemma 4.3 [Katz et al.’07])

Points on concave regions may 
not be correctly handled by HPR.
The local curvature must be
sufficiently low.



Conclusion

• Binary Orientation Tree
– Easy to implement
– Efficient to compute
– Useful for many geometric modeling and processing 

problems.

• Future directions
– Handling of incomplete point sets.
– More robust space carving (concave regions).
– Embedding other useful metadata other than in/out tags.

30



31

Thank you for your attention!


