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Abstract

Skeleton-based action recognition is a cornerstone of
modern fitness applications, yet it suffers from signifi-
cant performance degradation when faced with novel view-
points. This paper presents FIAS, a comprehensive frame-
work for building a robust and, crucially, explainable fit-
ness analysis system. We first conduct a systematic anal-
ysis of the ST-GCN++ model, targeting the challenges
of cross-view generalization. Qur experiments establish
that a mixed-view training strategy combined with dynamic
2D modalities and augmentations is paramount, achiev-
ing a state-of-the-art offline accuracy of 99.53% within our
dataset’s distribution, conclusively outperforming 3D-lifted
counterparts.

Beyond offline accuracy, we evaluated the system’s vi-
ability for real-time deployment. QOur temporal analysis
shows the model achieves a strong category-level mean
Temporal IoU (mloU) of 0.478 with a rapid 0.670s aver-
age responsiveness, confirming its suitability for streaming
applications. Finally, we introduce a novel XAl pipeline
that utilizes Grad-CAM to visualize the model’s biome-
chanical evidence, which is then translated into action-
able, human-readable coaching advice by a Large Lan-
guage Model (LLM). This work provides a clear directive
for building practical fitness Al: prioritize a diverse, aug-
mented 2D training pipeline and integrate explainability
methods to transform a high-accuracy classifier into a trust-
worthy, real-time coaching tool.

1. Introduction

Human Action Recognition (HAR) has become a pivotal
technology in a myriad of applications, from autonomous
driving and surveillance to human-computer XAl interac-
tion. Its recent application in automated fitness coach-
ing has gained significant traction, promising to democ-

Chiu Yun Chang
hsl02a4a04@gmail.com

Liong Zheng Ee
1ze0603@gmail.com

ratize personal training by providing real-time feedback.
Skeleton-based methods are particularly well-suited for this
domain due to their computational efficiency and robustness
to environmental variations.

However, a significant and often underestimated chal-
lenge in deploying these systems in uncontrolled environ-
ments is viewpoint variance. A model trained on exercise
data captured from a single perspective may exhibit a pre-
cipitous decline in performance when the user’s orientation
changes. This lack of cross-view generalization is a major
barrier to creating reliable fitness applications. A common
assumption is that lifting 2D skeletons to 3D will resolve
this; however, 3D data estimated from a single 2D source
can be noisy and carry inherent view-dependent biases, po-
tentially failing to provide the expected robustness.

This paper addresses this challenge through a compre-
hensive and systematic experimental framework. We de-
veloped FIAS (Fitness Insight Analysis System) to explore
the intricate relationship between input data dimensionality
(2D vs. 3D), feature modality (joint, bone, motion), and
training strategy (single-view vs. mixed-view). Our goal
is to identify an optimal configuration for a skeleton-based
model that is both highly accurate and robust to viewpoint
changes. Our key contributions are threefold:

1. We provide an exhaustive cross-view generalization
analysis, quantifying the severe performance degrada-
tion of single-view models.

2. We demonstrate that a mixed-view training strategy
combined with simpler 2D dynamic features (bone and
joint motion) decisively outperforms more complex
3D models.

3. We introduce a novel XAI framework that leverages
Grad-CAM and an LLM to translate model predic-
tions into explainable, human-centric coaching feed-
back, validating its efficacy with a qualitative case
study.



Our results offer a clear framework for practitioners, em-
phasizing that data diversity and effective 2D feature rep-
resentation are more critical than data dimensionality for
building robust and practical fitness Al.

2. Related Work

2.1. Datasets for Interactive Coaching and General
Activities

A key related challenge in fitness Al is situated in-
teraction”, where models must proactively provide feed-
back in real-time. The Qualcomm Exercise Videos Dataset
(QEVD) introduced by Panchal et al. is a large-scale bench-
mark designed for this purpose [6]. Their work, which in-
cludes the QEVD-FIT-300K short-clip collection, focuses
on the temporal challenge of when to deliver streaming
feedback.

While our FIAS project used a custom-curated dataset
to analyze specific exercise errors, we utilized the diverse
“general activities” (e.g., “grabbing a towel,” “drinking
from a bottle”) from QEVD-FIT-300K to train our model’s
’idle’ class. This ensures our system can distinguish be-
tween deliberate exercises and other real-world actions.

Our contribution remains distinct: where Panchal et al.
focus on the interactive dialogue layer, FIAS focuses on en-
suring the underlying recognition engine is robust to cross-
view failure and interpretable via our XAI-LLM pipeline.

2.2. Advancements in Skeleton-Based Action
Recognition

Skeleton-based human action recognition has emerged
as a prominent and effective approach within computer vi-
sion. By representing human motion as a time-series of key-
point coordinates, this modality offers robustness to varia-
tions in background, lighting, and camera viewpoints. A
paradigm shift occurred with the introduction of graph-
based deep learning models, which are uniquely suited to
the non-Euclidean topology of the human skeleton.

The foundational work by Yan et al. [9] introduced
the Spatio-Temporal Graph Convolutional Network (ST-
GCN), a model that effectively learns both spatial depen-
dencies between joints and their temporal dynamics. This
spurred a wave of research focused on enhancing predic-
tive power. Models such as ST-GCN++ [4] represent ongo-
ing efforts, often incorporating more sophisticated network
designs to achieve state-of-the-art accuracy on large-scale
benchmarks. However, the predominant focus of this re-
search has been on improving classification metrics, with
less emphasis on the XAI Interpretability of the models’
decision-making processes.

2.3. The Need for XAI Interpretability in Deep
Learning Models

While advanced models such as ST-GCN++ [4] have
demonstrated impressive performance, their black-box na-
ture poses a major obstacle to adoption in applications that
demand transparency and user trust—such as automated fit-
ness coaching. The field of eXplainable Al (XAI) [1] has
introduced numerous techniques aimed at revealing the in-
ternal mechanisms of deep neural networks. Among these,
Gradient-weighted Class Activation Mapping (Grad-CAM)
[8] has emerged as a widely used method for visualizing
model attention. By producing heatmaps that highlight
salient input regions, Grad-CAM offers intuitive visual ex-
planations of model predictions. Although its effectiveness
has been well established in image-based tasks, applying
it to the spatio-temporal domain of skeleton-based action
recognition remains an emerging research direction. Most
prior studies have focused primarily on improving model
accuracy, leaving the explainability aspect largely underex-
plored. This paper aims to bridge this gap, emphasizing that
for Human Action Recognition (HAR) systems to be truly
effective, they must also provide interpretable rationales for
their predictions.

Recent research has moved beyond simply applying XAI
methods to skeleton-based HAR [7], instead beginning to
critically evaluate their reliability and the metrics used for
assessment. This is a crucial development, as the black-
box nature of models like ST-GCN++ continues to hinder
trust in high-stakes applications such as fitness guidance.
For example, Pellano et al. examined the applicability of
established XAI evaluation metrics—specifically faithful-
ness and stability—to explanations generated by CAM and
Grad-CAM on 3D skeleton data. Their findings reveal the
complexity of this challenge: faithfulness can be inconsis-
tent across contexts, whereas stability tends to serve as a
more reliable indicator. This highlights the ongoing need
for robust evaluation standards for explainability in this do-
main. While such studies focus on validating XAI met-
rics, our proposed framework, FIAS, extends this line of
work by demonstrating a practical application of explain-
ability—leveraging Grad-CAM outputs to power a down-
stream LLM-based coaching tool for interpretable and user-
trustworthy feedback.

3. Methodology

Our Fitness Insight Analysis System (FIAS) is imple-
mented as a multi-stage pipeline designed to transform a
raw video of an exercise into an explainable, human-centric
diagnostic report. The overall architecture of this pipeline
is illustrated in Figure 1.

The process begins with a raw Video input. In the
first stage, we employ a high-performance pose estimator,



RTMPose, to extract 2D skeleton Keypoint data for each
frame. This data is then formatted into an annotation file
suitable for our action recognition model.

In the second stage, the formatted keypoint data is
fed into a trained STGCN++ Action Recognition model,
which performs two critical tasks simultaneously. It first
infers the most likely Predicted class for the action (e.g.,
‘squat-correct®). Concurrently, we utilize the backpropa-
gated gradient information from this prediction to perform
a GradCAM gradient analysis. This analysis generates a
spatio-temporal saliency map, identifying the key joints and
moments that were most influential to the model’s decision.

Finally, in the third stage, both the ‘Predicted class‘
and the saliency data from GradCAM are synthesized in
a Structured Prompt generation module. This prompt,
containing all the relevant biomechanical evidence, is then
passed to a Large Language Model (LLM), which is
tasked with generating the final, human-readable diagnos-
tic report. This end-to-end framework successfully bridges
the gap between a quantitative model prediction and a qual-
itative, expert-level coaching insight.

3.1. Dataset Curation

Recognizing the limitations of existing public datasets,
we curated a custom video dataset for analyzing fitness
movements. The dataset comprises approximately 1,600
video clips of three foundational actions: lunges, squats,
and push-ups. We defined nine distinct classes, categoriz-
ing each action into a ”correct” form and two common error
variants (e.g., lunge-correct, lunge-too-high,
lunge—knee-pass—-toe).

A central feature is the systematic control of camera
viewpoints. Approximately half of the videos were captured
from front-facing angles (0°, +£45°), while the remainder
were from back-facing angles (180°, £135°). This bifur-
cated structure is crucial for evaluating a model’s ability to
generalize across unseen viewpoints.

3.2. Preprocessing

Our preprocessing pipeline consists of three stages:

1. Skeleton Extraction: We extracted 2D skeletons us-
ing the RTMPose model [5], represented as 17 COCO-
compliant keypoints per frame.

2. Temporal Sampling: We uniformly sampled 40
frames from each clip to create fixed-length sequences.

3. Spatial Normalization: We normalized each skeleton
by translating it so the central hip joint is anchored at
the origin (0,0).

For experiments requiring 3D data, we employed the MM-
Pose 3D lifter [2] to estimate a z coordinate for each 2D

joint, acknowledging that this process can introduce esti-
mation noise.

3.3. Action Recognition Framework

We utilized the MMAction2 toolbox [3] for all training
and evaluation.

3.3.1 Core Recognition Model and Modalities

We selected ST-GCN++ [4] as our primary recognition
model. A skeleton at frame ¢ is a graph G, = (V;, E),
where vertices V; = {v; | ¢« = 1,..., N} are the joint
coordinates. For 2D, v;; = (z,y) € R?; for 3D, v;; =
(z,y, 2) € R®. We derive four input modalities:

¢ Joint: Raw coordinates (V1, ..., Vr).
* Joint Motion: Temporal difference AV; = Vi1 — V;.
* Bone: Vectors b, ; ; = v ; — v¢; for connected joints.

* Bone Motion: Temporal difference of bone vectors
ABt - Bt+1 - Bt'

3.3.2 Training Details and Augmentations

Models were trained for 20 epochs using a batch size of 16.
We utilized an SGD optimizer (Ir=0.001, momentum=0.9,
weight decay=0.0005, nesterov=True) and a CosineAn-
nealingLR scheduler (T« = 20, nmin = 0). To enhance
model robustness against variations in scale and orienta-
tion, we also injected new augmentation methods not native
to MMAction2, including Random Reotation and Random
Scale on the keypoint data.

3.3.3 Cross-View Evaluation Protocol

To directly measure viewpoint generalization, we defined
three data partitions: a Front set, a Back set, and a
Both set. We then trained our models under three distinct
schemes and evaluated them on all test sets to measure per-
formance on seen and unseen viewpoints, using Top-1 ac-
curacy as the primary metric.

3.4. Interpretable Al for Automated Coaching

To transform our classifier into a practical fitness tool,
we developed a novel XAl pipeline [1].

1. Saliency Analysis: We apply Grad-CAM to our
trained ST-GCN++ model to produce spatio-temporal
saliency maps, highlighting which body parts were
most influential in the model’s decision.
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Figure 1. The overall architecture of the FIAS pipeline. From a raw video input, the system extracts keypoints, performs action recognition
and Grad-CAM analysis concurrently, generates a structured prompt with the findings, and uses an LLM to produce the final human-

readable coaching report.

Trained on Front

Trained on Back

Trained on Both

Modality (Dimension) Test: Front (f/f) Test: Back (f/ba) Test: Both (f/bo) Test: Back (ba/ba)

Test: Front (ba/f) Test: Both (ba/bo) Test: Both (bo/bo) Test: Front (bo/f) Test: Back (bo/b)

2D Joint 0.9452 0.3250 0.6023 0.9125 0.3288 0.5906 0.9532 1.0000 0.8375
2D Joint Motion 0.9589 0.2750 0.5380 0.9625 0.2466 0.5556 0.9649 1.0000 0.8500
2D Bone 0.9452 0.3750 0.6842 0.9625 0.3699 0.5906 0.9240 1.0000 0.8125
2D Bone Motion 1.0000 0.2375 0.6140 0.9625 0.3562 0.5848 0.9649 1.0000 0.8250
3D Joint 0.7808 0.2500 0.5263 0.8375 0.2192 0.5556 0.8129 0.9178 0.8875
3D Joint Motion 0.7945 0.2875 0.5556 0.7750 0.2055 0.6082 0.8187 0.8904 0.9250
3D Bone 0.8082 0.2250 0.4678 0.8625 0.2603 0.5731 0.7953 0.9315 0.9000
3D Bone Motion 0.7397 0.2875 0.5029 0.8125 0.1918 0.5789 0.7602 0.8493 0.9000

Table 1. Cross-View Generalization Results (Top-1 Accuracy). This table compares the performance of different modalities when trained
on front, back, or both views, and tested across all three conditions. The highest accuracy in each primary test column (f/f, ba/ba, bo/bo) is

highlighted in bold.

2. Automated Report Generation: Our system pro-
grammatically analyzes these maps to extract key in-
formation (e.g., most activated joints). This structured
data is passed to an LLM via an engineered prompt, in-
structing it to act as a sports science expert and synthe-
size the data into a concise diagnostic report, avoiding
all technical jargon.

4. Experiments and Results

We now present the results of our comprehensive evalu-
ation. Our findings reveal a clear path to achieving robust
action recognition by prioritizing training strategy and data
representation.

4.1. Cross-View Generalization Analysis

The core of our investigation lies in understanding how
models generalize across viewpoints. The results for all
modalities and training schemes are detailed in Table 1.

Motion and Bone Features are Highly Effective. Our
results indicate that derived 2D features representing dy-
namics are the most powerful. The top-performing mod-
els consistently utilize these modalities, with 2D Bone
Motion achieving a perfect 100% accuracy on the front-
view test (f/f), and 2D Joint Motion and 2D Bone

Motion achieving the highest score of 96.49% on the
mixed-view test (bo/bo).

Single-view models exhibit severe degradation. The
data confirms the critical problem of viewpoint overfitting.
As shown in Figures 2a and 2b, models trained on a single
view exhibit significant error diffusion. Even the perfect-
scoring 2D Bone Motion model (100% on f/f) sees its
accuracy plummet to 23.75% when tested on the back view
(f/ba). This substantial degradation indicates their unsuit-
ability for real-world applications.

Mixed-View Training Creates Highly Robust Models.
Our findings strongly suggest that a mixed-view training
strategy provides the most robust generalization. Models
trained on the ‘Both‘ dataset not only achieve the highest ac-
curacies but also develop a remarkable ability to generalize.
As shown in Table 1, all four 2D models trained on mixed
data achieve a perfect 100% accuracy on the front-view test
set (bo/f) and very strong accuracies (81-85%) on the back-
view test set (bo/b). This demonstrates that the model has
learned a truly robust, viewpoint-invariant representation.
The confusion matrix for our ‘Best Overall 2D Model® in
Figure 2c vividly illustrates this, presenting a near-perfectly
diagonalized matrix.
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Figure 2. Confusion Matrices for Representative Models. The ‘Baseline‘ and ‘Best Single-View* models show significant error diffusion.
The mixed-view ‘Best 3D Model‘ improves to a block-diagonal structure, while the ‘Best Overall 2D Model‘ achieves near-perfect diago-

nalization, indicating superior classification accuracy and fewer Inter-class confusions under XAl analysis.

Modality

2D Model

3D Model

2D Model with Categorical Loss and augmentation

2D Model with augmentation

Joint
Joint Motion
Bone
Bone Motion

0.9532
0.9649
0.9240
0.9649

0.8129
0.8187
0.7953
0.7602

0.9812
0.9812
0.9671
0.9812

0.9812
0.9953
0.9765

0.9859

Table 2. Comparison of Model Accuracy Across Different Input Modalities and Augmentation Strategies. Our augmentations (Random
Rotation, Random Scale) were the primary driver of high accuracy. As shown in Table 2, augmentations alone boosted our 2D models to
near-perfect Top-1 accuracy (e.g., 99.53% on Joint Motion)

4.2. The Decisive Advantage of 2D Data

A key conclusion from our analysis is that 2D modali-
ties are conclusively superior to 3D for this task. In every



Per-Class F1-Score Comparison (Baseline vs. 2D vs. 3D vs. Single-View)
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Figure 3. Per-Class F1-Score Comparison. The chart illustrates F1-scores for individual exercise classes across four representative models
evaluated on the challenging mixed-view ’both’ test set, highlighting the superior performance of the ‘Best Overall 2D model.

Class Avg. Stability  Avg. Responsiveness Temporal IoU
lunge 85.86% 0.408s 0.494
push_up 76.68% 0.956s 0.504
squat 44.93 % 2.358s 0.437
idle N/A 0.099s (to idle) N/A
OVERALL 64.47 % 0.670s (Avg) 0.478 (mloU)

Table 3. Analysis of Per-Category Real-Time Performance for the Proposed Action Recognition Model. Model is highly effective at
identifying the general action in real-time. Its main challenge is distinguishing between subtle variations of that action.

matched-view scenario (‘f/f*, ‘ba/ba‘, and ‘bo/bo°), the top-
performing 2D models achieve significantly higher accu-
racy than their 3D counterparts. For instance, in the mixed-
view test (‘bo/bo‘), the best 2D model reaches 96.49%
while the best 3D model only manages 81.87%. This is
likely because 3D pose data inferred from a single 2D
camera is not truly viewpoint-invariant and carries view-
dependent biases. The simpler 2D representations prove
more robust, leading to the conclusion that a superior train-
ing methodology with effective 2D features is the most im-
pactful path to success.

4.3. Per-Class Performance and Qualitative Analy-
sis

To gain a more granular understanding, we performed

a per-class analysis using the Fl-score, visualized in Fig-

ure 3. The chart starkly illustrates the inability of single-
view models to generalize, as they exhibit low performance

across nearly all classes on the mixed-view test. The mas-
sive performance leap with mixed-view training demon-
strates that data diversity is the most crucial factor for build-
ing a robust system.

Superiority of the Optimal 2D Model

The ‘Best Overall 2D model‘ is demonstrably superior to
the ‘Best 3D model‘, achieving perfect or near-perfect F1-
scores on most classes. The performance gap is particularly
evident in classes like ‘push-up-correct* (0.97 for 2D vs.
0.75 for 3D), providing conclusive visual proof that a well-
trained 2D model decisively outperforms its 3D counterpart.

Anomaly in ‘lunge-too-high‘ Class

An interesting exception was observed in the ‘lunge-
too-high® class, where the ‘Best Single-View 2D‘ model
(F1=0.83) outperformed the ‘Best 3D (Mixed-View)‘ model



(F1=0.68). We hypothesize this is due to a highly discrim-
inative 2D cue (e.g., thigh angle) that is exceptionally clear
from the front view, which the specialist model learned as
an effective shortcut. The 3D mixed-view model, facing the
more complex challenge of creating a unified representa-
tion, may have produced a more generalized but less effec-
tive solution for this specific case.

Analysis of Real-Time Metrics

At the category level, the model’s overall performance is
respectable. An overall Stability of 64.47% and a mean
Temporal IoU (mloU) of 0.478 (where ~0.5 is a common
threshold for correct detection) prove that the model can
successfully identify the correct exercise type (e.g., ‘lunge)
for the majority of the duration. Furthermore, the overall
Responsiveness of 0.670s shows the model is fast at detect-
ing when a general action begins (Tab. 3).

However, the results also highlight a clear bottleneck:
the ‘squat‘ category. Its Stability is low (44.93%) and its
Responsiveness is slow (2.358s). This suggests that while
the model is proficient at identifying lunges and push-ups,
it struggles to differentiate ‘squat‘ movements from ‘idle‘ at
the beginning of an action. In contrast, at the fine-grained
level (evaluating all 9 classes), the overall performance is
significantly lower (e.g., 33.64% Stability and 4.223s Re-
sponsiveness). This discrepancy proves that the model’s
main challenge is not in identifying the general action, but
in distinguishing between its subtle correct and incorrect
variations in real-time.

4.4. XAI Case Study: '"Push-up'' Assessment

To validate our XAl framework, we conducted a quali-
tative analysis on the “push-up” exercise. We focused on
instances correctly classified as push—-up—elbow, indi-
cating an incorrect elbow position. Grad-CAM visualiza-
tions (Figure 4) revealed a consistent pattern of high activa-
tion on the wrists, shoulders, and hips. This demonstrates
the model’s ability to identify the kinetic chain’s areas of
stress resulting from the primary error. An incorrect elbow
alignment leads to compensatory strain on the wrists and
instability in the core, reflected by hip activation.

This structured data—the classification and the salient
joints—was fed into our LLM pipeline. The LLM, act-
ing as a fitness coach, successfully translated this analysis
into diagnostic advice: “Based on my analysis, it appears
there might be an issue with your elbow positioning. This is
causing uneven pressure on your wrists and requiring your
shoulders and hips to compensate... 1 recommend focus-
ing on keeping your elbows directly in line with your shoul-
ders...”

This case study demonstrates the power of our frame-
work to automate the generation of expert-level, human-

Figure 4. Grad-CAM visualization for the push-up-elbow
class. The model’s attention (warm colors) is focused on the wrists
and shoulders, identifying areas of compensatory strain.

centric feedback.

5. Conclusion

In this paper, we presented FIAS, a comprehensive
framework for building a robust and explainable skeleton-
based action recognition system. Our systematic analysis
yielded several key insights. We first demonstrated that
models trained on single-view data fail catastrophically to
generalize, highlighting viewpoint variance as a critical bot-
tleneck.

Our central finding is that prioritizing 2D data diversity
is decisively superior to pursuing more complex 3D-lifted
data. We demonstrated that a 2D ST-GCN++ model trained
on a mixed-view dataset achieves a state-of-the-art offline
accuracy of 96.49%, substantially outperforming 3D-lifted
counterparts.

Furthermore, our real-time analysis confirmed the sys-
tem’s practical viability. On an RTX-1080 GPU, the
model achieved a strong category-level mean Temporal IoU
(mIoU) of 0.478 and a rapid average responsiveness of
0.670s, proving it can generate accurate reports in a stream-
ing context.

Finally, we moved beyond simple classification by in-
troducing a novel XAI pipeline. By utilizing Grad-CAM
to analyze the model’s prediction activation map, our sys-
tem gains a temporal and biomechanical understanding of
*why* a prediction was made. By integrating this hier-
archical understanding with an LLM, FIAS successfully
translates complex biomechanical evidence into trustwor-
thy, human-like, and expert-level coaching advice. This
work provides a complete blueprint for moving beyond sim-
ple classification to create truly intelligent and interpretable



fitness tools.
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