• Menu
  • Introduction
  • System Structure
  • Experiment
  • Presentation
  • Reference
  • About Us
  • Menu
  • Introduction
  • System Structure
  • Experiment
  • Presentation
  • Reference
  • About Us

Detection Model

PointNet

  • Directly working on point cloud

PointNet++

  • Enhance on Further Point Sampling/ Ball query 
  • Better local feature extraction / density adaptation  

VoteNet (Our backbone model)

  • PointNet++ as backbone  

Dataset - SUN RGB-D

Indoor dataset

Total 19 categories

  • Focusing on 10 of them
  • Bed/table/sofa/chair/toilet/desk/dresser/night stand/book/bathhub

Measure Performance

  • mAP: average precision with 3D IoU threshold 0.25  

Official VoteNet

Performance:

  • mAP: 0.573

VoteNet with RGB

Change the input information from point cloud

  • Original: 3-dimension (x, y, z) of each pixel
  • Modified: 6-dimension (x, y, z, r, g, b) of each pixel

The improvement of performance is not obvious

  • mAP: 0.586

Double Feature Version

Modified backbone module 

  • 4 Set Abstraction Layers 
  • 3 Feature Upsampling Layers 
  • Output 512 features  

The improvement of performance is not obvious

  • mAP: 0.578

Additional Feature Version

Change the input information from point cloud

  • RGB version: 6-dimension (x, y, z, r, g, b) of each pixel 
  • Modified: 73-dimension (x, y, z, r, g, b, rs, gs, bs, 64 convolution features) of each pixel

The improvement of performance is still not efficient

  • mAP: 0.510

Comparisons of the attempts

Page End

Previous Next

NTHUCS CVLAB 2020

Website Templates

created with

Website Builder Software .